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Abstract: 
Annotation of genome data with biological features is a challenging problem. One such problem deals with distinguishing lncRNA from 
mRNA. In this study, three groups of classification features, namely base periodicity, physicochemical property and nucleotide 
compositions were considered. We are attempting to propose a simple neural network model to obtain better results using judicious 
combination of the above said sequence features. Our approach uses balanced dataset, simple prediction model and use of limited features 
in distinguishing lncRNA and mRNA. Accordingly (a) two properties of base periodicity: peak power spectrum of the signal and noise-to-
signal ratio (SNR) of this peak signal (b) three physicochemical properties: solvation, stacking and hydrogen-bonding energy and (c) all 
dinucleotides and trinucleotides compositions were used. Classification was performed by considering features independently followed by 
combining these properties for improvement. Classification metric was used to compare the result for seven eukaryotic organisms for 
various combinations of features. Nucleotide compositions combined with physicochemical property or base periodicity group of features 
becomes a strong classifier with more than 99 percentage accuracy. Base periodicity analysis with SNR can be used as discriminating 
feature of lncRNA from mRNA. 
 
Keywords: lncRNA, mRNA, Bioinformatics, physicochemical feature, machine learning, computational biology 

 
Background: 

Gene transcription is one of the very important processes, where 
information embedded in DNA is transcribed into different types of 
RNA. Only one type of RNA is responsible for coding proteins, and 
the rest are non-coding but are involved in other cellular activities 
and at various stages of gene regulation [1]. Specific orientation and 
spatial stability of DNA is very important for storage and retrieval 
of correct information [2]. Further, under noncoding several 
categories were characterized like long noncoding RNA (lncRNAs), 
microRNAs (miRNA), small interfering RNAs (siRNAs), ribosomal 
RNAs (rRNAs), etc. There is a growing interest in understanding 
the functionality of lncRNA. Since lncRNA acts as a biomarker of 
various diseases, studies related to lncRNA are undertaken in a big 
way [3]. 

 
There are a small number of experimentally annotated sequences 
known so far in the publicly available databases which create an 
uphill task in developing a good software prediction tool. In this 
field LncFinder software package, introduced in 2019 by Han,S. et 
al., is employed for predicting lncRNA [4]. Our predictive model 
not only distinguishes between lncRNA and mRNA but also 
contributes meaningfully, highlighting the importance of our work 
in complementing the capabilities of LncFinder. Heterogeneity in 
lncRNA is another problem that creates obstacles in proposing 
standard methods for characterization [5]. Researchers employ an 
integrative approach i.e. combining experimental and in silico 
approach to identify lncRNA. 
 
Spatial arrangement of DNA sequence depends on many 
physicochemical factors, like ionic interaction, hydrogen bonding, 
base stacking, pH, salt concentration, superposing, etc. [6]. 
Although all physicochemical properties are important, hydrogen 
bonding, stacking, and solvation based energies play critical roles 
in maintaining the structural integrity of DNA molecules [7]. 
Despite biochemical similarities, lncRNA and mRNA have many 
distinguishable factors, like distinct sequence patterns. Since 

mRNA sequences have open reading frames and CDS arrangement, 
their pattern differs from non-specific lncRNA arrangements [1]. 
 
 In this study, we have considered three parameters (1) di-base and 
tri-base nucleotide compositions (2) the physicochemical property 
(solvation energy, stacking energy, and hydrogen bonding energy) 
of di and tri-base and (3) base periodicity within DNA sequences. 
Analysis of sequences from different organisms verifies this fact in 
bacteria that the 3-base periodicity is embedded in protein-coding 
sequences. This feature is weak in non-coding sequences [8]. This 
can be seen in the frequency domain through the Fourier transform 
[9]. 
 
The Artificial neural network model (ANN) is a popular framework 
in sequence analysis tasks because it captures symbolic patterns 
more intelligently than conventional statistical methods [10]. In the 
current study, we have built a sequence-based binary classification 
model for eukaryotic lncRNA and mRNA, both for standalone 
features and in combination with three feature classes. 
Many attempts were made using computational method prediction 
or classification of lncRNA and mRNA, reader may also refer about 
the comparative performance of various prediction tools [11]. 
 
In this study, we have considered seven model organisms for 
lncRNA and mRNA sequences. All these species have differences in 
the number of lncRNA and experimental mRNA data. Several 
features were derived from the basic properties i.e., composition, 
Physicochemical energy and periodicity, in this way, we have a 
total 88 features for this model. Naturally dimensionality reduction 
needed attention. Considering available data pertaining to lncRNA 
and mRNA, our study tried to utilize the embedded properties to 
make a distinction and a step to improve the classification 
performance. Our study is novel in preparing a good prediction 
model with a simple neural network setup with a combination of 
features. 
 
Materials and methods: 
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Data source: 
The sequences of lncRNA for all seven organisms have been taken 
from the Non-Code database of version V5.0. [12]. Experimental 
sequences of mRNA were filtered from the transcript files publicly 
available at NCBI. Also, these sequences of lncRNA and mRNA 
were randomly chosen from all organisms to construct a combined 
(mix) dataset. Experimental values of Dinucleotides 
physicochemical energy are listed in Supplementary Table 1 and 
Experimental values of trinucleotides physicochemical energy in 
Supplementary Table 2 of additional file 1. The number of lncRNA 
and mRNA sequences of the chosen eukaryotes for our study is 
listed in Table 1. 
 
Table 1: lncRNA and mRNA sequences of eukaryotic organisms 

Model organisms lncRNA mRNA 

Chimpanzee 18002 2025 

Platypus 11208 264 

Zebrafish 4850 15392 

C. elegans 3152 28532 

Chicken 12848 8377 

Cow 23513 13307 

Arabidopsis thaliana 3762 48145 

Combined set 77335 116042 

 
In the present study we have considered three properties for 
analysis and they are (1) 
 
Composition based features:(a) PCA-based dinucleotide 
compositions, (b) PCA-based trinucleotide compositions, (2) 
Physicochemical energy-based features: (a) solvation energy, (b) 
stacking energy, (c) hydrogen bonding energy of dinucleotide and 
trinucleotide sequences and (3) Base periodicity-based features: (a) 
peak power spectrum (b) SNR. Following section covers these 
features in detail. 
 
Physicochemical properties of dinucleotides and trinucleotides: 
Experimental values of physicochemical energy have been derived 
from a series of MD simulations for all possible tetra-nucleotide 
sequences [13]. Further, solvation energy, stacking energy, and 
hydrogen bonding energy for all possible trinucleotide 
combinations have been derived from their average occurrence in 
tetra-nucleotides. These properties for trinucleotides have been 
further mapped to dinucleotides [13, 14]. Sequence can be modelled 
as a separate Markov chain and first order transition matrix can be 
constructed [15]. 
The transition matrix of trinucleotides or dinucleotides is, Pk  = 
p(si/sj), where p is the probability of transition from the state si to 
state sj of kth sequence of lncRNA/mRNA, sj belongs to 4096 states 
space for trinucleotide and 256 states of dinucleotides. The 
procedure for construction is as follows [14-16]. Detailed 
description of the method for calculation of physicochemical 

properties features of dinucleotides and trinucleotides are added in 
Supplementary figure 1 in additional file 1. 
 
Base periodicity of lncRNA and mRNA: 
In this study, we have analyzed the peak of the power spectrum 
and SNR of peak spectrum. In bioinformatics, base periodicity has 
been explored to unravel biological features. Fourier spectrum of 
lncRNA and mRNA is defined using binary indicator function as 
described in Method 1 of additional file 2 [8]. 
 
Principal component analysis (PCA) of Dinucleotides and 
trinucleotides 
Counting the number of all 2-base, and 3-base compositions for all 
sequences of lncRNA and mRNA separately, this creates 64-
dimensional data for trinucleotides and 16-dimensional for 
dinucleotides. To overcome the computational complexity, PCA is 
used on this to obtain 15 principal components (pc) for each 
category i.e. dinucleotide composition and trinucleotide 
compositions. In this way, the total dimension is reduced to 30 (15 
pc each for trinucleotides and dinucleotides compositions). 
 
Data preparation: 
Since, we have unequal amount of data for the classification task. 
Hence, two approaches are undertaken: (1) randomly select data 
from the major class and matched with same number as minor 
class, here major refers to the one having higher training examples 
in the chosen species. (2) Using SMOTE to build the model, SMOTE 
systematically over samples data in the minor class. SMOTE 
algorithm draws a line segment between neighbouring minority 
instances that lie in the minority class. SMOTE selects randomly 
these line segments and generates new minority instances [17]. 
 
Neural network model: 
The number of neurons in the input layer and hidden layers varies 
according to the dimensionality of input data for the network. 
There are five types of single features DP, TP DC, TC, and BP. All 
other features are a combination of these five individual features. 
For example, TPTC is a combination of features TP (mean weighted 
Trinucleotide physicochemical energy) and TC (Principle 
component of trinucleotides). We select 15-dimensional data in 16 
different proportions for all 16 types of feature combinations from 
the total data sets as mentioned in Table 2. 
 
For our study, we have three major feature groups. We have 
constructed sixteen neural network model setups as shown in 
Supplementary Table 3 with selectively chosen features. Details of 
the data preparation flow chart were explained in supplementary 
figure 2 and supplementary Table 3. The architecture of all 16 
neural networks is listed in Supplementary Table 3. 

 
Table 2: Feature combination and feature selection 

S. No. Types of features and their combination           No. of feature selected 
1 Dinucleotides Physicochemical energy (DP) 3 (3 features from DP) 
2 Trinucleotide physicochemical Energy (TP) 3 (3 features from DP) 
3 Dinucleotide and Trinucleotide Physicochemical energy 3+3=6 (3 features from DP and three features from TP) 
4 PCA-based Dinucleotide composition (DC) 15 (15 features from DC) 
5 PCA-based Trinucleotide composition (TC) 15 (15 features from TC) 
6 Base periodicity (BP)  2 (2 features from BP) 
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7 Base periodicity and Dinucleotide Physicochemical energy (BPDP)  2+3= 5 (2 features from BP and 3 features for DP) 
8 Base periodicity and Trinucleotide Physicochemical energy (BPTP)  2+3= 5 (2 features from BP and 3 features from TP) 
9 Base periodicity, Dinucleotide physicochemical energy and Trinucleotide (BPDPTP) 2+3+3= 8 (2 features from BP, 3 features from DP and Three 

features from 
10 Base periodicity and PCA-based Dinucleotide Composition (BPDC) 2+13=15 ( 2 features  from BP and 13 feature from DC) 
11 Base periodicity and PCA based Trinucleotide compositions (BPTC) 2+13=15 (2 features from BP and 2 feature from TC) 
12 Base periodicity, PCA based Dinucleotide composition and PCA based Trinucleotides 

composition (BPDCTC). 
2+7+6=15 ( 2 features from BP ,7 features  from DC and 6 feature 
from TC) 

13 Dinucleotide Physicochemical energy and PCA based Dinucleotides composition (TPTC) 3+12 =15 (3 features from TP and 12 features from TC) 
14 Trinucleotide physicochemical energy and PCA based Trinucleotide composition (DCTC) 3+12=15 (3 features from DC and 12 features from TC) 
15 PCA based Dinucleotide compositions and PCA based Trinucleotide compositions (DCTC)  8+7 =15 (8 features from DC and 7 features from TC) 
16 Trinucleotide physicochemical energy, PCA based Trinucleotide compositions, Dinucleotide 

physicochemical energy and Dinucleotide compositions. (TPTCDPDC) 
3+4+3+5 =15 (3 feature from TP, 4 features from TC, 3 features 
from DP and 5 features from DC 

 
Results: 
Genome sequence data were generated in a faster manner, which 
results in huge amounts of data to be analyzed. Only a 
computational approach is the solution for this problem and to give 
biological meaning to raw data. As described in method section we 
consider seven organisms and their sequences belonging to lncRNA 
and mRNA. The analysis proposed on the sequences based on the 
above said properties are described and how to discriminate them 
using a simple prediction model. In our analysis dealing with 
lncRNA and mRNA two types of approaches followed in removing 
data imbalance. For the first case, random data were selected from 
the one having a higher sample to equal the number of sequences 
having fewer ones. In the second case, data imbalance is achieved 
using the SMOTE algorithm as described in the material and 
method section. 
 
Periodicity spectrum: 
The highest value of the periodicity spectrum is considered as peak 
w.r.t certain frequency, Figures 1. a and 1. b depicts the spectrum 
for mRNA and lncRNA and easy to see that a prominent peak is 
absent in lncRNA. Value of Peaks of lncRNA and mRNA sequences 
are shown in figure 1.c and 1.d as a scatter plot w.r.to its length. It 
can be observed that the peak spectrum at 1/3 decreases with 
increased length, in both mRNA and lncRNA. However, the 
average peak in mRNA is higher than that of lncRNA as expected. 
Ogive plot given in figure 1.e and 1.f, it is observed that SNR is 
higher in mRNA as compared to lncRNA. Majority of the SNR for 
mRNA is above 4 whereas SNR for lncRNA is below 4. This 
observation may be useful for discrimination purposes. 
 
One can suggest positively skewed distributions for maximum 
peak spectrum as well as SNR for all considered organisms. 
Lognormal, gamma and exponential distributions are generally 
used to model many processes in molecular biology [18]. In this 
study, we have fitted lognormal, gamma, and exponential 
distributions for SNR and peak spectrum. It can be seen from 
Figure 2 that lognormal distribution shows best fit. Details of 
lognormal fit described in Supplementary figure 3 of additional file 
2, and MLE values are listed in Supplementary Table 4. 
 

In the feature combination process, we have selected 4, 5, 6, 7, 8, 12 
and 15 PCs from the transformed PC space and more than 95 
percent variability is retained in the PCs. These are listed in the 
Supplementary Table 5. 
 
In this study, we have used the binary cross-entropy function. 
 
Loss(y, yˆ) = −y log(yˆ) − (1 − y). log(1 − yˆ) 
 
Where y is true label [0 and 1], and yˆ is predicted label usually 
between 0 and 1 Figure 3.(a)-(c) shows binary cross entropy loss for 
three of 7 considered organisms namely chicken, chimpanzee, and 
platypus respectively, and a mix of their sequences shown in Figure 
3 (d). There are three regimes in plots. The left regime is the loss of 
model for individual features like DP, TP, BP, etc. Middle regime in 
the plot for combined, physicochemical properties and base 
periodicity of dinucleotides as well as trinucleotides is noted. The 
right regime for a combination of trinucleotide and dinucleotide 
composition with base periodicity and physicochemical properties 
is also noted. 
 
In the case of C. elegans, the number of experimental mRNA 
sequences is larger than the number of lncRNA sequences. 
However, in the case of chickens, there are more lncRNA sequences 
than experimental mRNA sequences. There are fewer experimental 
mRNA sequences available in the database for Platypus as 
compared to lncRNA, this leads to the model having more bias and 
therefore generalization not good with fewer data points.it is 
evident from Figure 3.d. 
 
Classification Metrics of all 16 feature combinations for 6 
considered organisms using approach 2 (with SMOTE) listed in 
supplementary Table 6-8 in the additional file 3. (metrics for 
Chimpanzee and C. elegans in supplementary table 6, Cow and 
Platypus in supplementary table 7, and Zebrafish and Arabidopsis 
thaliana in supplementary table 8).It seems that the model 
performances are better with nucleotide composition than the 
physicochemical property (dinucleotide and trinucleotide). 
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(a) (b) 

 
                            (c)                                                                    (d) 

                                                       
                     (e)                                                                              (f) 
Figure 1: Variation of the peak power spectrum and SNR for lncRNA and mRNA. (a)  Power spectrum of mRNA for Chimpanzee mRNA (NM 001008975.1) 
and (b) for Power spectrum of zebrafish lncRNA (NONDRET013003; (c) and (d) are Scatter plots of Chicken mRNA and lncRNA respectively varies with 
length.  (e and 1.f are  given  plots of  SNR for  C. elegens mRNA  and lncRNA respectively.  
 

 
                                      (a)                                                                                                  (b) 
Figure 2: Fitting of candidate distribution with MLE parameter; (a) Distribution of SNR for Chicken mNRA and (b) for Chicken lncRNA. 
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                                 (a)                                                       (b) 

 
                      (c)                                                                      (d) 
Figure 3: Binary cross entropy loss with and without SMOTE   (a) C. elegans, (b) Chicken, and (c) for mix of lncRNA/mRNA of C. elegans, chicken  
chipmanzee  and platypus. 
 

However, performance got enhanced significantly when combining 
dinucleotide composition with trinucleotide composition features. 
Overall it can be said that any single or engineered features 
combined with trinucleotide composition provide remarkable 
improvement. Some combined features like DCTC, BPDC, BPTC, 
BPDCTC, DPDC, TPTC, and DPTPDCTC have a remark-able 
performance of up to 99 percent accuracy. The classification metric 
scores of the mixtures of these species are approximately similar to 
the scores for individual species as shown in bar chart of 
supplementary Figure 4 (Supplementary Material). 
 
Classification metrics for the organisms C. elegans, chimpanzees, 
platypus, and for the mixed sequences of these three organisms, 

have been compiled using both approaches with and without 
SMOTE. Metrics of C. elegans and platypus are listed in Table 3. 
Classification metrics of chicken and mix sequences of these three 
species are listed in Supplementary Table 9. In these tables, on the 
left of ’/’ is the classification metric for the balanced datasets (using 
SMOTE), while on the right are the metric values for the balanced 
datasets (without using SMOTE). It can be seen that there is a small 
difference in metrics between the two approaches in performance 
for individual features, whereas the metric values difference 
between the two approaches is relatively less in the case of 
combined features. 

 
Table 3: The classification metrics 

Organism C. elegans  

Combination Accuracy Precision Recall Roc Prc F1 score 

DP 0.7788/0.7709 0.8004/0.8245 0.7444/0.7037 0.8595/0.8569 0.8448/0.8683 0.7714/0.759325 

TP 0.7915/0.76148 0.7602/0.8449 0.8513/0.6558 0.8763/0.8528 0.8680/0.8409 0.8027/0.738435 

DPTP 0.8020/0.7709 0.7996/0.8213 0.7955/0.6990 0.8885/0.8670 0.8887/0.8706 0.7958/0.75523 

DC 0.8807/0.87638 0.8712/0.9028 0.8943/0.85970 0.9556/0.9344 0.9567/0.9418 0.8823/0.88072 

TC 0.9176/0.876 0.9112/0.8629 0.9264/0.8881 0.9731/0.9408 0.9708/0.9194 0.9184/0.87531 

DCTC 0.9888/0.9793 0.9887/0.9811 0.9892/0.9781 0.9988/0.9948 0.9968/0.99541 0.9889/0.97954 

BP 0.8030/0.7812 0.7884/0.7968 0.8321/0.7799 0.8916/0.8791 0.8793/0.8663 0.8097/0.78825 

BPDP 0.8106/0.79318 0.8214/0.7533 0.7881/0.8421 0.8992/0.8943 0.8959/0.8737 0.8044/0.79522 

BPTP 0.8253/0.8090 0.82147/0.78930 0.8314/0.8143 0.9079/0.8931 0.9011/0.8879 0.8314/0.8016 

BPDPTP 0.8345/0.8225 0.8247/0.8681 0.8507/0.7571 0.9245/0.91287 0.9267/0.9096 0.8375/0.8088 

BPDC 0.9978/0.9976 0.9989/0.9955 0.9968/1.0 0.9997/0.9991 0.99970/0.9984 0.9978/0.997744 

BPTC 0.9986/0.9968 0.9982/0.9969 0.9991/0.9969 0.9999/ 0.99980/0.9968 0.9986/0.9969 

BPDCTC 0.9993/0.9952 0.99982/0.9969 0.99894/0.9969 0.99964/0.9987 0.99978/0.9977 0.99938/0.9969 

DPDC 0.9940/0.9952 0.9930/0.9716 0.9947/0.9824 0.9993/0.9935 0.9989/0.9882 0.9938/0.97697 

TPTC 0.9991/0.9936 0.9982/0.9937 1.000/0.9937 0.9997/0.9974 0.9994/0.9962 0.9991/0.9937 

DPTPDCTC 0.9999/0.9960 0.9999/0.9935 0.9993/0.9983 0.9997/0.9990 0.9999/0.9981 0.9995/0.99589 

Organism 
DP 

Platypus 
0.87801/0.8113 

 
0.89061/0.8333 

 
0.8579/0.76923 

 
0.9434/0.8557 

 
0.94967/0.8951 

 
0.8730/0.799984 

TP 0.8612/0.8584 0.8950/0.8333 0.8193/0.8510 0.8949/0.9051 0.9284/0.9229 0.8552/0.842056 

DPTP 0.9288/0.8679 0.9301/0.9200 0.9272/0.8214 0.9820/0.9185 0.9839/0.9362 0.9291/0.86768 
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DC 0.9591/0.7735 0.9704/0.7555 0.9704/0.7234 0.9922/0.80814 0.9934/0.84018 0.9591/0.739101 

TC 0.9830/0.6415 0.9875/0.64814 0.9788/0.6481 0.99761/0.7079 0.99789/0.6648 0.9831/0.648119 

DCTC 0.9946/0.58490 0.9964/0.5671 0.9929/0.7169 0.9984/0.63581 0.9987/0.6422 0.99447/0.63326 

BP 0.96275/0.9245 0.93993/0.8906 0.98887/0.9827 0.9904/0.9565 0.98989/0.9027 0.963782/0.934385 

BPDP 0.96632/0.97169 0.95116/0.9607 0.98302/0.9800 0.9912/0.99285 0.99015/0.9915 0.96683/0.97025 

BPTP 0.9694/0.9716 0.96396/0.9499 0.97405/1.0 0.99481/0.9915 0.9949/0.9913 0.96898/0.9743 

BPDPTP 0.97033/0.952830 0.96236/0.8999 0.97907/1.0 0.99315/0.9974 0.98955/0.9965 0.970646/0.94731 

BPDC 0.99776/0.8867 0.99954/0.9259 0.99594/0.8620 0.999970.9601 0.99997/0.9649 0.96683/0.8928 

BPTC 0.99866/0.9811 1/0.9830 0.99726/0.98305 0.9999/0.99026 0.9999977/0.9948 0.99933051/0.993747 

BPDCTC 0.99955/0.9528 0.99954/0.9591 0.999547/0.9399 0.99976/0.9896 0.999852/0.98978 0.9995478/0.94940 

DPDC 0.9977/0.89622 0.9990/0.910714 0.9963/0.8947 0.9992/0.93340 0.9995/0.9098 0.9977/0.902629 

TPTC 0.9968/0.9528 0.9942/0.9473 0.99955/0.96428 0.9971/0.9853 0.9941/0.9828 0.9968/0.9281 

DPTPTC 0.9975/0.9339 0.9981/0.95081 0.9967/0.9354 0.9995/0.96151 0.9996/0.3587 0.9974/0.94304 

 
Discussion: 
The objective of genome annotation is to characterize the DNA 
sequence makeup in terms of biological features. It is a difficult task 
because DNA sequences have embedded information at different 
lengths, scales, heterogeneity, order, compositions, etc. Codons, 
which are a trinucleotide combination, can distinguish coding RNA 
from other types. Similarly, many sequence features can be utilized 
to identify other RNAs. Several approaches and algorithms were 
proposed to classify lncRNA and mRNA [11]. For the data 
imbalance case SMOTE may do over fitting to some extent but we 
do not have other choices. This study is exhaustive in nature and 
introduces a machine learning-based binary classification approach 
that integrates three distinct sets of properties for discriminating 
between lncRNA and mRNA sequences. When we consider these 
three properties i.e. compositions, physicochemical property and 
base periodicity individually for the clarification purpose, they 
showed poor results. Among three trinucleotide compositions is the 
best choice. However, when model with combination of 
composition, periodicity and physicochemical property, it showed 
good benchmark performance results. 
 
Conclusion: 
Base periodicity is better classifier than the model based on 
physiochemical properties. However, the model based on 
composition is better than the base periodicity. Model with 
combined features perform better than that of those individual’s 
case. From the analysis we conclude that the trinucleotide 
composition is best individual classifier. However, it enhances 
performance when combined with dinucleotide compositions base 
periodicity and physicochemical properties. This model attains 
high accuracy of about 99 percent and provides valuable insights 
into the structural aspect of gene sequences. 
 
Limitation: 

The lncRNA data were downloaded from public database which 
contains experimentally validated and computationally predicted 
lncRNA. Hence, one must keep this fact while studying the metrics. 
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