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Abstract:  
The use of a flavonoid compound sterubin in drug discovery is gaining momentum. Hence, it is of interest to document the molecular 
network analysis to docking of sterubin with potential targets to glean insights. We identified 32 target genes and (or) gene products for 
sterubin using DAVID tools for GO, KEGG pathway enrichment analyses and the STRING database. Further, molecular docking analysis 
data of sterubin with these targets is documented for further consideration in broad-spectrum drug discovery. 
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Background: 
The medicinal properties of plants are mostly attributed to their 
secondary phytochemical metabolites. These natural products, 
which have evolved over millions of years, have a unique chemical 
diversity that results in immense biological activities and drug-like 
properties [1]. Secondary metabolites are further categorized into a 
number of groups, including glycosides, tannins, terpenoids, 
alkaloids and phenyl-propanoids and allied phenolic compounds, 
depending on their biosynthetic origins [2]. Natural polyphenols 
from plants are called flavonoids, which are naturally occurring 
compounds that are biosynthesized from phenylalanine, and are 
ubiquitous to green pigments in the plant kingdom [3]. Until now, 
more than 7,000 flavonoids have been reported from natural 
sources including medicinal plants, vegetables, fruits and wines [4]. 
They are grouped into a variety of sub-classes according to their 
chemical composition and the different types of substituents 
present in their aromatic rings, namely flavanones, flavonols, 
flavones, isoflavones, dihydroflavones, chalcones, anthocyanidins 
and catechins.  
 
Natural O-methylated flavones, flavanones, and chalcones are the 
majority of them. Some of these compounds have also been found 
to apply beneficial physiological effects. Sterubin which as a potent 
antioxidant, free radical scavenger, and metal chelator, also 
presents anti-cholinesterase, anti-aging, neuroprotective and anti-
inflammatory properties and neuro-trophic roles, ameliorating 
learning and memory, possessing potent antidepressant and anti-
amyloidogenic effects, suppressing the activation of microglia, and 
mediating inflammatory processes in the central nervous system 
(CNS) [5].  
 
Sterubin (7-O-Methyleriodicytol) is a flavanone compound from the 
leaves of Eriodicyton californium, Eriodicyton angustifolim (Yerba 
santa). It has a broad range of pharmacological properties such as 
high neuroprotective, anti-inflammatory, anti-oxidant, anti-amyloid 
and it is used to treat respiratory ailments such as cough, cold, 
asthma, bronchitis and age-related complications. Sterubin has been 
identified through old age-associated phenotypic screening [6]. 

Sterubin exhibits antioxidant activities by protection against 
oxytosis (oxidative glutamate toxicity) in HT22 cell line with an 
EC50 0.8 µM. Moreover, in a short-term model of AD the amyloid 
beta (Aβ) peptide injected into the cerebral ventricles, was able to 
prevent Aβ-induced decreases in short and long-term memory [7]. 
Therefore, it is of interest to document the network and molecular 
docking analysis data of sterubin with potential targets to glean 
insights. 
 

 
Figure 1: The overall work flow diagram 
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Methodology: 
PubChem database-based screening of chemical structures and 
ADMET Analyses: 
PubChem is a free and open database containing important 
information about drug development and chemical biology 
research PubChem [8]. The chemical formula and SMILES of 
sterubin were found by entering the term "Sterubin" in the search 
box. ADMET analysis for sterubin was performed using the pkCSM 
web tool [9]. The procedure for sterubin gene prediction and 
analysis is shown in Figure 1. 
 
Screening of possible target for sterubin using binding database:  

A free online Binding DB database covers protein interactions with 
small drug-like compounds. It was connected to numerous 
databases, and these connections were used to extract further 
information regarding the targets. Using SMILES and the "homo 
sapiens" setting in Binding DB 
(https://www.bindingdb.org/bind/index.jsp) by selecting the 
"minimum needed interaction score" to "high confidence (0.700)" 
throughout the prediction phase, the target genes was evaluated in 
Binding DB [10]. 
 
Protein-Protein interaction network construction and analysis: 
STRING 11.0 is an online database that collects, assesses, and 
integrates information regarding protein–protein interactions from 
publicly available sources (http://string-db.org) [11]. It can 
enhance the existing data on protein-protein interactions with 
computational predictions. The STRING database contained 58 

additional potential sterubin targets. The species was set to Homo 
sapiens, and the minimum interaction score was set to 0.7 to create 
a protein interaction network. For visual analysis, the findings were 
loaded into Cytoscape 3.7.2. The degree was calculated to identify 
core targets by the Network analyzer plugin 
(http://appss.cytoscape.org/apps/net-workanalyzer). A higher 
degree value node represented putative crucial targets of sterubin 
in the PPI network. The top 10 targets were selected according to 
the degree as core targets. 
 
Gene ontology and KEGG pathway enrichment analysis: 
The biological process (BP), molecular function (MF), cell 
component (CC), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment were analyzed using the Database for 
Annotation, Visualization, and Integrated Discovery (DAVID) 
(https://david.ncifcrf.gov/) to explicate the role of target proteins 
that interact with sterubin [12]. 
 
Construction of sterubin-target-pathway network: 
The top 20 pathways were evaluated using DAVID based on KEGG 
pathway enrichment analysis to reflect the relationship between 
sterubin-target-pathways network was constructed through 
Cytoscape 3.7.2 software. 
 

Molecular docking: 

For the molecular docking, 10 target genes such as HSP90 AA 1, 
AKT-1, ESR-1, RELA, ESR-2, AR, APP, PPAR-δ, STAT1 and HSP90 
AB 1 were selected by comparing the hub genes with the results 
provided by KEGG analysis pathways.  The sterubin were docked 
with these potential targets. The structures of sterubin were 
retrieved from the PubChem database. The selected 3D structure of 
the ligands was retrieved from PubChem compound database in 
SDF format followed by conversion in the PDB format and 
optimization using Discovery Studio.  The lower (more negative) 
the binding energy, the stronger the anticipated affinity for binding 
of the ligand against the target in molecular docking. Protein Data 
Bank was used to obtain the crystal structures of target genes 
HSP90 AA 1, AKT-1, ESR-1, RELA, ESR-2, AR, APP, PPAR-δ, 
STAT1 and HSP90 AB 1. Prior to docking analysis, prominent 
active site prediction of these selected targets was carried out by 
PDB Sum database. The active site region is given in Table 3. 
Molecular docking was carried out using Auto dock 4.2.1 software 
based on Lamarckian Genetic Algorithm; which combines energy 
evaluation through grids of affinity potential to find the suitable 
binding position for a ligand on a given protein. Grid maps were 
generated by Auto Grid program. Each grid was cantered at the 
crystal structure of the corresponding targets. The grid dimensions 
were 60 Å X 60 Å X 60 Å with points separated by 0.375 Å. For all 
ligands, random starting positions, random orientations, and 
torsions were used. The Docking parameters Number of Genetic 
Algorithm (GA) runs: 25, Population size: 150, Maximum number 
of evaluations: 2,500,000, Maximum number of generations: 27,000 
were used for this study. The structure with the lowest binding free 
energy and the most cluster members was chosen for the optimum 
docking conformation.  
 

 
Figure 2: Protein interaction network for sterubin 
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Figure 3: Top 10 degree of sterubin targets 
 

Results and Discussion: 

The SIMLES and chemical formula of sterubin were retrieved from 
the PubChem database (Figure 1). The ADMET analysis of sterubin 
was conducted using the online tool pkCSM, and the results 
indicated that it fell within the "Accepted" category. These data 
indicate that sterubin possesses all drug-likeness properties, as 
confirmed by ADMET analysis, as shown in Table 1. The Binding 
DB database was examined for potential sterubin gene targets. 
These showed that 58 target genes were associated with sterubin 
Table 2. Additional studies have been conducted using these target 
genes. The 58 target genes of sterubin were submitted to the 
STRING database with the Homo sapiens filter as a species to 
construct a protein-protein interaction network. The PPI network 
nodes and related interactions revealed how various targets interact 
with multiple targets during disease development. To visualize the 
results, the findings were loaded into Cytoscape (Figure 2). The size 
and color of the circles vary depending on the degree value. The 
PPI network comprised 58 nodes and 83 edges. According to the 
Cytoscape Network Analyzer, the top 10 targets were selected as 
the core targets, as shown in (Figure 3). These might be the main 
sterubin targets that support the pharmacological activity of the 
compound. 

Table 1: ADMET analysis of sterubin 

Molecular Weight Absorption Distribution Metabolism Excretion Toxicity 

 WS IS SP BBB CNSP CYP3A4 CYP2C19 TC MTD ORAT HT SS AMES 
302.282 -3.223 83.94 -2.736 -1.13 -3.112 NO No 0.102 -0.011 2.588 No No No 

BBBP = blood brain barrier permeability (log BBB), CNSP = CNS permeability (log PS), IS = intestinal solubility (%abs), ORAT = oral rat acute toxicity (LD50), SP = skin 
permeability (log Kp), TC = total clearance (log ml/min/kg), WS = water solubility (log mol/L), MTD (Maximum tolerated dose). 
 
Table 2: Potential genes targeted by sterubin 

S.N Gene UniProt ID Description 

1 PGD P52209 6-phosphogluconate dehydrogenase 
2 ACHE  P22303 Acetylcholinesterase 
3 AKR1C3 P42330  Aldo-keto reductase family 1 member C3 
4 ALPL P05186 Alkaline phosphatase, tissue-nonspecific isozyme 
5 FUT7 Q11130 Alpha-(1,3)-fucosyltransferase 7 
6 SNCA P37840 Alpha-synuclein 
7 MAOB P27338 Amine oxidase [flavin-containing] B 
8 APP  P05067 Amyloid-beta precursor protein 
9 AR P10275 Androgen receptor 

10 Bcl-2 P10415 Apoptosis regulator Bcl-2 
11 CYP19A1 P11511  Aromatase 
12 ABCB1 P08183  ATP-dependent translocase ABCB1 
13 BACE1 P56817  Beta-secretase 1 
14 CA1  P00915  Carbonic anhydrase 1 
15 CA12  O43570  Carbonic anhydrase 12 
16 CA2  P00918  Carbonic anhydrase 2 
17 CA4 P22748 Carbonic anhydrase 4 
18 CA7 P43166 Carbonic anhydrase 7 
19 CTSV  O60911  Cathepsin L2 
20 CYP4A11  Q02928 Cytochrome P450 1B1 
21 DRD2  P14416  D (2) dopamine receptor 
22 DPP4  P27487  Dipeptidyl peptidase 4 
23 DNMT1  P26358  DNA (cytosine-5)-methyltransferase 1 
24 RAD52  P43351  DNA repair protein RAD52 homolog 
25 DYRK1A  Q13627  Dual specificity tyrosine-phosphorylation-regulated kinase 1A 
26 ELAVL3 Q14576  ELAV-like protein 3 
27 ESR1 P03372 Estrogen receptor 
28 ESR2 Q92731 Estrogen receptor beta 
29 PLA2G10 O15496 Group 10 secretory phospholipase A2 
30 HSP90AA1 P07900 Heat shock protein HSP 90-alpha 
31 HSP90AB1 P08238 Heat shock protein HSP 90-beta 
32 MET P08581 Hepatocyte growth factor receptor 
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33 HRH3 Q9Y5N1 Histamine H3 receptor 
34 MAPKAPK5 Q8IW41 MAP kinase-activated protein kinase 5 
35 GRM5 P41594 Metabotropic glutamate receptor 5 
36 PPARG P37231 Peroxisome proliferator-activated receptor gamma 
37 PGAM1 P18669 Phosphoglycerate mutase 1 
38 PLA2G5 P39877 Phospholipase A2 group V 
39 PLA2G1B P04054 Phospholipase A2, membrane associated 
40 SERPINE1 P05121 Plasminogen activator inhibitor 1 
41 ALOX5 P09917 Polyunsaturated fatty acid 5-lipoxygenase 
42  PTGS1 P23219 Prostaglandin G/H synthase 1 
43 PSMB5 P28074 Proteasome subunit beta type-5 
44 F2 P00734 Prothrombin 
45 AKT1 P31749 RAC-alpha serine/threonine-protein kinase 
46 RIPK1 Q13546 Receptor-interacting serine/threonine-protein kinase 1 
47 RXRA P19793 Retinoic acid receptor RXR-alpha 
48 SHBG P04278 Sex hormone-binding globulin 
49 STAT1 P42224 Signal transducer and activator of transcription 1-alpha/beta 
50 SLCO2B1 O94956 Solute carrier organic anion transporter family member 2B1 
51 TERT O14746 Telomerase reverse transcriptase 
52 RELA Q04206 Transcription factor p65 
53 TTR P02766 Transthyretin 
54 PTPN1 P18031 Tyrosine-protein phosphatase non-receptor type 1 
55 CACNA1G O43497 Voltage-dependent T-type calcium channel subunit alpha-1G 
56 CACNA1H O95180 Voltage-dependent T-type calcium channel subunit alpha-1H 
57 XBP1 P17861 X-box-binding protein 1 
58 XDH P47989 Xanthine dehydrogenase/oxidase 

 

 
Figure 4: GO enrichment analysis of target genes. Top 10 selected according count of the gene of BP, CC & MF 
 
GO enrichment analysis with the aid of the DAVID tool was 
employed to gain further insights into the 48 genes that were 
identified. The top 10 significantly enriched items in the BP, MF, 
and CC categories were chosen based on P<0.05, as shown in 
(Figure 3). The Benjamini-Hochberg process was employed to 
correct the p-values. BP (117 records), MF (51records) and CC (22 

records) respectively. Bubble plots of bioprocesses and pathways 
were drawn by uploading the data to the bioinformatics platform 
(Figure 4). Target proteins in the BP category were mainly involved 
in signal transduction, positive and negative regulation of 
transcription from the RNA polymerase II promoter, responses to 
drugs and xenobiotic stimuli, negative regulation of gene 
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expression, positive regulation of gene expression, and negative 
regulation of the apoptotic process. Protein binding, identical 
protein binding, zinc ion binding, protein homo-dimerization 
activity, enzyme binding, DNA binding, and other main MF 

categories are only a few examples. The plasma membrane, cytosol, 
nucleoplasm, extracellular exosome, extracellular area, 
macromolecular complex, mitochondrion, and cell surface were 
among the target proteins in CC. 

 

 
Figure 5: KEGG Enrichment analysis of target gene. 
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Using the DAVID tool, we also performed KEGG enrichment 
analysis on these potential genes. KEGG pathway enrichment 
analysis identified 32 probable target genes from 48 target genes, 
and 10 signal pathways were strongly associated with the target 
genes (P<0.05). Figure 5 shows 20 pathways and their enrichment 
ratios. According to KEGG pathway analysis, the metabolic 
pathways (hsa01100), cancer-related pathways (hsa05200), chemical 
carcinogenesis-receptor activation (hsa05207), Alzheimer's disease 
(hsa05010), lipid and atherosclerosis (hsa05417), PI3K-Akt 
signalling (hsa04151), MAPK signalling pathway (hsa04010), Ras 
signalling pathway (hsa04014), arachidonic acid metabolism 
(hsa00590), and salmonella infection (hsa05132) were among the 

pathways that were significantly enriched. Using Cytoscape 3.7.2, 
we created a drug-target-pathway network diagram to more clearly 
show how sterubin, targets, and pathway interact. Figure 6 depicts 
a network with 49 nodes and 59 edges. The compound was 
represented using a yellow hexagonal; targets were represented 
using blue circle, and pathways using brown-square. The 
relationship between receptor-ligand interactions and 
pharmacodynamics pathways is facilitated by signalling pathways, 
which are a crucial component of systemic pharmacology. A target-
pathway signalling network was created by placing all target 
proteins that interacts sterubin in the top 10 KEGG pathways.  

 

 
Figure 6: Sterubin-target-pathway network 
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Table 3: Protein speciations 

S.NO PROTEIN PBD CODE RESOLUTION  ) ORGANISM METHOD Active site 

1 HSP90 AA 1 2YKJ 1.46   Homo Sapiens X-ray diffraction Leu 103, Try 139  

2 AKT-1 6HHH 2.70   Homo Sapiens X-ray diffraction Glu 85 a 

3 ESR-1 3ERT 1.90   Homo Sapiens X-ray diffraction Glu 353, Arg 394 

4 RELA/NFKB p65 7BIW 1.2   Homo Sapiens X-ray diffraction Arg 56, Arg 139, Tyr 130, Asn 175, Asp 215 

5 ESR-2 1X78 2.30   Homo Sapiens X-ray diffraction Leu 610, Thr 611, Thr 612 

6 AR 3L3X 1.55   Homo Sapiens X-ray diffraction Asn 705, Arg 752, Thr 877  

7 APP 3PMR 2.11   Homo Sapiens X-ray diffraction Lys 484, Arg 491 

8 PPAR-δ 8DSZ 2.50   Homo Sapiens X-ray diffraction Ser 317, Tyr 355  

9 STAT1 1yvl 3.00   Homo Sapiens X-ray diffraction Lys 584, Ser 606, Ser 604, Arg 602, Ala 630, His 629, Glu 632, Tyr 651 

10 HSP90 AB 1 3NMQ 2.2   Homo Sapiens X-ray diffraction Asp 93  

 
Table 4: Sterubin-target molecular docking analysis 

Bioactive Component Target  PDB ID Binding energy (Kcal/mol) Description 

Sterubin 

HSP90 AA 1 2YKJ -6.54  Heat shock protein 90 alpha family class A Member 1 
AKT-1 6HHH -8.10  AKT serine/threonine kinase 1 

ESR-1 3ERT -7.43 Estrogen receptor 
RELA 7BIW -5.94 Transcription factor p65 
ESR-2 1X78 -8.17 Estrogen receptor beta 
AR 3L3X -8.33 Androgen receptor 
APP 3PMR -8.79 Amyloid-beta precursor protein 
PPAR-δ 8DSZ -7.15 Peroxisome proliferator-activated receptor gamma 
STAT1 1yvl -5.37 Signal transducer and activator of transcription 1-alpha/beta 
HSP90 AB 1 3NMQ -8.23 Heat shock protein 90 alpha family class B Member 1 

 
Molecular docking was conducted with the top ten target genes, 
namely HSP90 AA 1, AKT-1, ESR-1, RELA, ESR-2, AR, APP, PPAR-
δ, STAT1, and HSP90 AB 1, which were carefully chosen through a 
systematic examination of the PPI network. Table 3 shows the 
target PDB ID, resolution, active site, and target specification 
criteria. Data on the top ten docked results of sterubin with selected 
targets are provided in the supplemental Table 4. The results of the 
top five affinities, ranked from the smallest to the largest, and 
visualized using Discovery Studio software. The binding affinity of 
sterubin to APP was the lowest, at -8.83 Kcal/mol. And rest of the 
target (AR, HSP90 AB1, ESR-2, AKT-1, ESR-1, PPAR-δ, HSP90 AA 1 
and RELA) dock scores were -8.33 Kcal/mol, -8.23 Kcal/mol, -8.17 
Kcal/mol, -8.10 Kcal/mol, -7.43 Kcal/mol, -7.15 Kcal/mol, -6.54 
Kcal/mol, and -5.94 Kcal/mol. According to a docking study, 
sterubin has significant-to-moderate interactions with these targets. 
Sterubin is a promising lead molecule for combating Alzheimer's 
disease and has a better score (APP -8.59 kJ/mol) than the rest of 
the targets. 
 
Previous studies [13-15] have shown that sterubin exhibits superior 
neuro-protective, anti-inflammatory, and antioxidant activities. It 
was also evaluated in a rat model of chemical-induced cognitive 
impairment, and the results showed a significant decrease in 
oxidative stress and inflammatory markers, and improved 
behavioural studies. As a result, more preclinical studies are 
needed to examine the potential of sterubin compounds for treating 
Alzheimer's disease in preclinical studies.  
 
Network pharmacology is a rapidly advancing field in drug 
development and it involves the integration of systematic medicine 
and information science [12]. In an effort to uncover the underlying 
mechanisms of synergistic therapeutic effects of traditional drugs, 
an in silico method was employed to construct a "protein-
compound/disease-gene" network [16]. This approach has shifted 
the focus from a traditional "one target, one drug" model to a 

"network-target, multiple-component therapeutics" concept. By 
utilizing this network analysis technique, not only were significant 
biological features and genes related to sterubin identified, but also 
GO and KEGG enrichment analyses were conducted. This approach 
has the potential to expedite the drug development process by 
initially examining, screening, and optimizing various essential 
pharmacological characteristics. 
 
Conclusions:  
It is of interest to document the network and molecular docking 
analysis data of sterubin with potential targets to glean insights. 
Hence, we document the analysis of 32 target genes and (or) its 
gene products and its molecular docking analysis with sterubin for 
further consideration in drug discovery. 
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