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Abstract: 
The immune system, an exquisitely regulated physiological system, utilizes a wide spectrum of soluble factors and multiple cell populations and 
subpopulations at diverse states of maturation to monitor and protect the organism against foreign organisms. Immune surveillance is ensured by 
distinguishing self-antigens from self-associated with non-self (e.g., viral) peptides presented by major histocompatibility complexes (MHC). Pathology is 
often identified as unregulated inflammatory responses (e.g., cytokine storm), or recognizing self as a non-self entity (i.e., auto-immunity). Artificial 
intelligence (AI), and in particular specific machine learning (ML) paradigms (e.g., Deep Learning [DL]) proffer powerful algorithms to better understand 
and more accurately predict immune responses, immune regulation and homeostasis, and immune reactivity to challenges (i.e., immune allostasis) by their 
intrinsic ability to interpret immune parameters, pathways and events by analyzing large amounts of complex data and drawing predictive inferences (i.e., 
immune tweening). We propose here that DL models play an increasingly significant role in better defining and characterizing immunological surveillance 
to ancient and novel virus species released by thawing permafrost. 
 
Keywords: 
Permafrost pathogens, Viremia, Inflammation, Machine Learning, Deep Learning, Deep Ensemble Learning, Molecular Dynamics Simulation, Neuronal Networks, Generative 
Adversarial Networks, Tracking Responders EXpanding, Immune tweening, TcR[αβ] (T cell receptor endowed with the α and β chains), T cell immunity, B cell immunity, CD45R0 
(marker of immune cell memory differentiation: ultimate restriction fragment [0] of the common leukocyte antigen, cluster of differentiation [CD]45), CD45RA (marker of naive 
CD4 & CD8 T cells, first restriction fragment [A] of CD45), TRegs (CD4/8+CD45RA+/R0+FoxP3+), CD279 (programmed cell death marker-1), CD62L (l-selectin, marker of T cells 
migration), CD25 (α-chain of the interleukin[IL]2 receptor, marker of T cell activation), Tim-3 (T cell immunoglobulin & mucin domain 3), GlycA (glycoprotein acetylation, 
systemic biomarker of systemic inflammation and autoimmunity), Autologous Immune Enhancement Therapy. 
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Background: 
In our previous work [1], we explored the applications and 
implications of AI in bio-modeling viral immune surveillance. In a 
simple linear multiple regression model, we posited the desired 
immune response outcome as Y, the ideal state of immune balance 
and immune physiological homeostasis following a viral infection. 
We proposed that Y, the outcome of the complex pattern of 
physiological, cellular, humoral and molecular immune regulation, 
can be expressed as the sum of positive and negative immune and 
psycho-neuroendocrine events. We posited that positive events 
push immune activation and maturation forward, whereas negative 
ones impede, blunt or block immunity. In brief, we argued that Y, 
viz. viral immune surveillance effectiveness, reflects the sum-
product of the fine, coordinated and time-regulated interaction of 
intertwined positive and negative (i.e., immune enhancing and 
immune suppressive) predictors, which themselves are mediated 
and regulated by immune cells and soluble factors, and modulated 
by products of physiological systems distinct from immunity (e.g., 
hormones, neuropeptides, microRNA’s and other molecular factors, 
etc.) [1]. We stated that gaps in knowledge would soon be filled by 
AI-assisted immune tweening, which we defined as the AI-aided 
computerized process of uncovering the initiating substrates, 
modulating cofactors and end products of individual immune-
regulatory sequences that lead to Y. We conceptualized immune 
tweening as a novel AI-driven process for better understanding the 
parameters, pathways and events that mediate, modulate and 
regulate viral immunity [1]. 
 
Neural Networks (NNs), the fundamental building blocks of DL, 
are highly effective when provided with the right information, 
without requiring constant guidance in the initial stages. The 
algorithms that characterize DL are typically endowed with 
multiple layers that progressively identify higher-level features 
from the raw input [2-4]. We now go beyond our early approach [1] 
and propose that DL, can, if well trained on AI algorithms focused 
on biological data, generate models able to perform a variety of 
complex tasks [2], including immune regulation. 
 
Immune tweening, as originally envisioned [1], necessitates regular 
temporal updates to establish, for instance, data-driven engines 
able to indicate the most effective treatments in any patient and 
virus combination for ensuring anti-viral immune therapy efficacy 
in general [5]. Nonetheless, these factors may be better defined and 
characterized by AI protocols developed and tested for a myriad of 
certain specific viruses and pathogens. Ultimately, DL model 
variants will be most useful for a broad spectrum of immune 
therapies, including the design and testing of new generation 
antibodies [6].  
 
To be clear, AI, and specifically certain models of ML such as DL 
and its variants, will find a valuable place in the field of viral 
immunity, particularly in the context of the emerging threat of 
novel and ancient pathogens released by melting permafrost [7,8]. 
A more effective and comprehensive understanding of permafrost 
viral immunity will require improved targeted AI-aided immune 
tweening by compartmentalizing different components of the 
immune system as separate variables, and by the underlying  
assumption that said factors may not be influenced by one another. 

 
Permafrost viremia and chronic inflammation: 
Thawing permafrost releases trapped heavy metals and greenhouse 
gasses, and a myriad of ancient and novel bacteria, viruses, fungi 
and parasites. Our immune system is ill-equipped to counter these 
new challenges, and requires considerable adaptation [7, 8] - a 
process physiologists term allostasis, the process of transition to 
and recovery of the equilibrium state of immune homeostasis. In 
brief, when faced with a foreign pathogen, the immune system 
launches a multi-faceted immune response to efficiently promote 
immune allostasis. Multiple bouts of viral infections threaten the 
wellbeing of individuals and of the general public during allostatic 
transition to extents that can bring about public health threats not 
dissimilar to the colliding epidemics the world is now experiencing 
[9]. 
 
Acute viremia generally does not produce a generalized chronic 
state of inflammation, but chronic viremia, or multiple viremia 
occurring concurrently can, and does. Inflammation mediates the 
convergence of tissue-resident and migrating T cells to regulate the 
transition to immune recovery (i.e., allostasis). Clinically, acute 
systemic tissue inflammation during viral infection reflects the 
migration of cytotoxic T lymphocytes (e.g., CD8+CD62L+) and the 
activation of tissue-resident CD8 T cells (i.e., CD8+CD25+).  
 
Inflammatory responses may become sustained and chronic when 
steady-state subclinical leukocytic immunity is lost consequential to 
the concerted immune responses designed to suppress infecting 
and shedding virus, and suppress virus-infected cells [8-11]. In 
brief, acute and chronic clinical inflammation can co-exist, and 
simultaneously alleviate certain aspects, or aggravate other facets of 
disease. Acute and chronic inflammation can act in clear and 
distinct manifestations, or in ill-defined intertwined ways, 
concomitantly or at different time points, depending on the patient 
and on the viruses involved [10].  
 
In most instances, acute inflammation is a protective response 
mediated by cell populations of innate immune system (e.g., 
dendritic cells, myeloid cells) that produce prostaglandins, 
inflammatory cytokines (e.g., IL1β, IL6) and other pro-
inflammatory mediators elicited by injury and infection, which 
promote immune activation. Chronic inflammation is a sustained 
damaging response that can lead to cytokine storms, with 
associated severe pathological damage to a variety of tissues, 
organs and systems. Chronic inflammation alters the regulation of 
activation and migration of cytotoxic cells, and impairs viral 
immunity in part by promoting T cell exhaustion (i.e., 
CD8+CD279+Tim-3+), and generalized cell-mediated immune 
suppression. Acute inflammation promotes tissue regeneration and 
healing and regulates B cell immunity, but chronic inflammation 
can lead to B cell overdrive and autoimmune reactions, as well as 
genetic mutations and epigenetic changes in normal tissues [11]. 
 
When concomitant infections by novel and ancient viruses released 
by melting permafrost produce new, and exacerbate existing 
colliding epidemics and pandemics [9], chronic states of 
inflammation can be expected to become pervasive. Significant 
manifestations of immune suppression, rather than activation, with 
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increased number and relative percentage of exhausted CD279+ 
and Tim-3+ CD8 T cells [12], deregulated inflammatory cytokines 
[12,13], and impaired B cell responses manifested as autoimmunity 
[13,14] are expected to occur concomitantly, becoming the norm in 
the population. 
 
Fundamental and clinical immunologists, alerted to this prospect, 
must deploy concerted efforts to counter these trends, lest the 
viremias caused by pathogens in melting permafrost become a 
gargantuan cross-national public health risk. We argue here that the 
magnitude of the threat is such that it can only be effectively 
handled by AI algorithms, such as DL and its variants. 
 
Deep machine learning for cellular immunity: 

Immune surveillance results from complex physiological sets of 
processes and pathways that intertwine innate and adaptive 
cellular immunity and that are mediated, modulated and regulated 
by a myriad of soluble factors that act upon a variety of immune 
cell populations from lymphoid, myeloid and other origins. 
Adaptive immunity is mediated by B and T cells [12-14]. 
 
T cells drive cellular immunity, and express a vast and diverse 
repertoire of T cell receptors (e.g., TcR[αβ]). In conjunction with 
peptide antigen presentation through major histocompatibility 
complex Class I (MHC-I), CD8+ T cells recognize and are cytotoxic 
to virus-infected cells.  Activated CD8+CD25+ T cells contribute to 
the adaptive immune repertoire of cytokines and soluble factors 
that regulate T cell maturation into memory (CD45R0+) cells, T cell 
exhaustion, and T cell death by apoptosis. Cytokines and factors 
produced by T cells also regulate B cell maturation and 
proliferation for the production and release of specific antibody 
species [12-14]. 
 
Proteomics and related techniques have generated a wealth of data 
on adaptive immune modulation and regulation, and large-scale 
data sets (i.e., meta-data) have led to the elaboration, testing and 
evaluation of general ML, and specific DL models for the 
identification and testing of complex and high-dimensional 
immune repertoires, including predicting the immunological status 
of a host to colliding infections with diverse novel and established 
virus species, and the engineering of relevant immune therapeutics 
[15], and vaccine development [16]. Having identified these 
pathways and parameters, immunologists may propose potential 
treatments such as Autologous Immune Enhancement Therapy 
(AIET), a process by which native (CD45RA+) T cells are removed 
from the patient's body where they are manipulated to mature into 
memory (CD45R0+) T cells by controlled exposure to new and 
ancient pathogens, and re-administered into the host to boost the 
immune response [8]. 
 
Broadly speaking, the immune repertoires that drive T and B cells 
maturations are determined largely by sequence-specific 
transcription factors. The manner in which the DNA sequence of 
cis-regulatory elements is decoded and orchestrated on the genome 
largely determines immune cell differentiation lineages. But the 
specifics of these leverages upon chromatin expression still requires 
full elucidation. Tailored algorithm architecture, such DL models, 
elaborated and trained to unravel the hierarchy of transcription 

factors and their molecular regulators, are key to this knowledge-
base.   
 
To be clear, DL modeling is sufficiently powerful and reliable to 
reveal the regulatory syntax predictive of the full complexity of the 
differentiation potential of immune cell populations and 
subpopulations [17]. Maximization of DL predictive potential 
should, in a relatively close future, generate new molecules with 
specific predicted biological activity profiles and targeted 
compound design   [18, 19]. 
 
DL models for infectious disease dynamics: 
Predicting infectious disease dynamics is a central challenge in 
disease ecology. DL models can identify the individuals most at 
risk of exposure to permafrost-released pathogens, provide 
valuable insights about disease transmission and dynamics, and 
guide and inform management interventions. DL can incorporate 
complex nonlinear relationships, with minimal statistical 
assumptions from ecological data with missing data, and yield 
enhanced predictive performance, compared to more traditional 
approaches. DL modeling of immunity will therefore efficiently 
capture and visualize strong nonlinear patterns and complex 
interactions between variables in shaping exposure risk from 
diverse virus infection potentials, and predict not only viral 
infection risk, but also epidemic ecology severity patterns of 
morbidity and mortality [20]. 
 
In the context of viral immunity, climatic landscapes, and host 
features are critical, albeit complex, variables in shaping outbreaks 
of vector-borne diseases. Case in point is the arbovirus bluetongue 
virus (BTV), a continuously vector-borne pathogen re-emerging 
among ruminants in the Western Hemisphere, with severe 
economic implications. ML modeling integrated 23 relevant 
environmental features and efficiently predicted close to 25,000 
outbreaks across 25 Western European countries over a 2-decade 
time span between 2000 and 2019. The model yielded high 
predictive performance across all BTV serotypes, and revealed that 
each of the major BTV serotypes had an outbreak risk profile 
unique to each geographical location. The algorithm showed strong 
interactive effects between environmental and host characteristics, 
and uncovered characteristics of the complex epidemiology of BTV 
recurrences [21]. 
 
Similar AI approaches will elucidate human viral infections, as the 
ability for viruses to mutate and evade the human immune system 
remains an obstacle to antiviral and vaccine development. Certain 
ML models in that regard have used properties such as the 
influenza hemagglutinin, the HIV-1 envelope glycoprotein, or the 
spike protein of SARS-CoV2 to predict, with different degrees of 
statistical success, escape from viral immune surveillance [22]. In 
brief, AI has been confirmed for its relevance clinically in chemo-
informatics, medicinal chemistry and bio-materials development in 
particular [23-25]. 
 
In the specific context of permafrost viral immunity, ML algorithms 
in general and DL modeling in particular will generate a close 
approximation of thaw depth and active layer thickness as discrete 
timelines and seasonal averages. These data will generate 
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important new information on general thaw trends, and estimates 
of inter-annual changes, and proffer a novel and efficient approach 
to predict and interpret seasonal permafrost, and the putative 
release of new and ancient viruses [26].  
 
Machine learning and deep learning variants: 
In brief, AI has unquestionably advanced infectious-disease 
surveillance, particularly in the broad context of the pathogens 
arising from climate change and permafrost melting. However, 
certain caveats of the widespread utilization of AI in general and 
DL modeling in particular in healthcare, and specifically in the area 
of infectious disease remain, including: 
 
1. First, that they impede patient privacy and blunt the patient-

centered experience, and  
2. Secondly, that they suffer the inherent weakness in sustaining 

the cross-jurisdictional and cross-functional coordination 
proffered by National (e.g., CDC) and international 
organizations (e.g., WHO) that is essential for the collective 
intelligence required to fight and control novel and emerging 
infectious diseases, especially in terms of ongoing endemic 
surveillance for preventing current colliding epidemics and 
the next pandemic [27]. 

 
To revise and expand current AI models, it will be necessary to 
revisit the original assumptions that have led to their current 
deployments. Case in point, in its current conceptualization the 
contemporary scientific model of AI derives from the 1943-design 
of Turing-complete artificial neurons by US neurophysiologists 
Warren McCullough (1898-1969) and Walter Pitts (1923-1969) in 
their notable 1943 [28] and 1948 papers [29]. The seminal work 
proposed and described the first mathematical model of a 
fundamental neural network, the McCulloch-Pitts neuron, based on 
threshold logic algorithms crafted to define and characterize both 
the fundamental biology of neural networks, and the implication 
and application of these machine-driven processes, henceforth 
dubbed 'artificial intelligence' (AI), to analyze and predict neural 
networks.  
 
Although, in the last eight decades, the McCulloch & Pitts' 
fundamental paradigm has fast advanced in several primary 
domains, including learning, reasoning, problem-solving, and 
decision-making, it has failed to incorporate either of the two issue 
domains noted by Brownstein and colleagues [27]. That is the 
primary reason why AI still performs poorly at this time in complex 
evaluative tasks of moral or ethics, such as what might be found in 
individualized patient-centered care experiences, or complex multi-
National evaluations and assessments. That is not to say that AI 
cannot handle those tasks; it is simply a reported observation [27] 
that, at present, it does not. It follows that it is timely and critical 
that ML models be improved from that perspective. 
 
Indeed as of today, AI, the capability of a computer system to 
mimic human cognitive functions such as learning and problem-
solving, to complex functions and logic to simulate human 
reasoning, with improved reliability, efficacy and speed, subsumes 
an array of technologies. Computer software protocols that mimic 
human cognition to perform complex tasks, learn from them, and 

repeat them in a replicable manner. It is that very capability that 
enables the fast, reliable, accurate and replicable performance of a 
variety of advanced functions along three major domains:  
 
1. artificial narrow intelligence (ANI) 
2. artificial general intelligence (AGI) and  
3. artificial super intelligence (ASI).  

 
To be clear, the development, testing, evaluation and application of 
all ML and DL modeling variants must proceed by distinct steps, 
which include:  
 
1. collect the initial data 
2. generate a hypothetical model that fits this preliminary data 
3. organize the data to fit the model algorithm 
4. run the model - that is to say, 'train' the model 
5. evaluate the outcomes of the preliminary runs of the model 
6. fine-tune the algorithm model to optimize its fit of the data 
7. generate predictions based on the model 
8. Expand and refine the model based on new data and findings 
 
ML models, therefore, use algorithms trained on data to perform a 
variety of complex tasks. ML modeling applications in healthcare in 
general, and in infectious diseases in particular, are subdivided into 
three principal domains:   
 
1. Supervised ML, where correct data are inserted in the 

algorithm to ensure catching and correcting computing errors 
2. Unsupervised ML (or reinforcement ML), where correct data 

are used to confirm and to reinforce the computational 
algorithm 

3. Deep ML, whose algorithms use multiple layers to extract 
progressively higher-level features from the raw input 

 
To be clear, in the context of clinical immunology, AI has developed 
with gargantuan leaps forward during the ongoing CoViD-19 
pandemic [1, 9, 12, 14, 27]. It now can provide a spectrum of data-
based, computer-mediated, distance-processed strategies to 
monitor the epidemiological impact of infectious diseases, 
epidemics and pandemics, from tracing trends and predicting 
peaks of morbidity and mortality, to assessing the effectiveness of 
novel vaccines and anti-virals, to recording insurance and Medicare 
coverage and transacting contactless private payments.  In brief, AI 
has strong potential for numerous and undeniably invaluable 
contributions as a global, interactive, open-source tool to assist 
health professionals locally and remotely (e.g., tele-medicine, tele-
dentistry) in fighting CoViD-19 [30, 31] and other colliding 
epidemics [9].  
 

The Molecular Dynamics (MD) variant of DL is a relevant 

computational approach [32]. It has been demonstrated to be 
reliable to investigate the chemical and structural features of the 
design of anti-viral drugs and novel vaccines that rely on 
fractalomic and idiotype/anti-idiotypic interactions [6, 33]. 
 
Moreover, the use of unsupervised ML to monitor immune cell 
subsets in viral and cancer immunity can potentially aid clinical 
immunologists identify and quantitatively characterize lymphocyte 
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naive (CD45RA+) and regulatory T (FoxP3+)1 cell subpopulations 
associated with clinical response and immune surveillance, or T cell 
exhaustion, anergy, apoptosis and disease progression. The ML 
workflow Tracking Responders EXpanding (T-REX) can, for 
instance, effectively identify changes in lymphocyte subpopulations 
based on multi-color flow-cytometry of circulating or tissue-
infiltrating immune cells based on phenotype and specific cluster of 
differentiation expression [34]. T-REX not only identifies 
biologically significant cells, but also identifies hotspots, and 
integrates trends that are predictive of disease outcome. T-REX is 
an efficient ML algorithm that rapidly identifies and characterizes 
mechanistically significant effector lymphocyte subpopulations, 
and places emerging diseases into a system's immunopathology 
context and allostatic recovery trajectory [34]. 
 
-- 
The protein family of transcription factors endowed with the 
forehead domain, i,e.,  Forxhead box, regulate cell proliferation, 
maturation and longevity. The Fox box family is composed of 
several classes of proteins, including the FoxP factors that control 
immune cells pluropotency and maturation. Among these, FoxP3 
pertains specifically to T cells, in that it controls and regulates the 
expression of genes involved in regulating T cell function, and 
leading to blunting of inflammatory, viral and cancer immunity 
and auto-immune responses putatively by regulating the 
expression and translocation of certain suppression-mediating 
molecules (e.g., extracellular adenosine) into the cytoplasm. 
-- 
 
In brief, AI in general, and ML specifically, is a science in its own 
right. The interpretation of the outcomes generated by algorithms 
such as T-REX require not only knowledge and training in clinical 
and fundamental immunology, but, and as importantly, AI 
expertise. ML specialists in general, and DL experts in particular 
must be involved alongside allergy and immunology researchers 
and clinicians in the design, validation, and implementation of AI 
in immune surveillance to ensure the appropriate development and 
application of dedicated algorithms, and the correct interpretation 
and patient-centered utilization of the data generated [35]. This 
proviso is critical when involving tweening as it is expanded from 
the domain of, for instance, medical imaging [36] to immune 
function and phenotypes (i.e., immune tweening, [1]), particularly 
as it may apply to evolving applications such as immunity to novel 
and ancient permafrost-released viruses and pathogens  [7,8].  
 
Conclusion: 
To explore the potential of ML and DL in immunity, one approach 
is to create an incomplete simulation of the immune response using 
Neural Networks (NNs) to predict allostasis. This method requires 
known inputs and outputs to replicate the simulation for different 
viruses. Interconnected NNs are populated by raw data, which are 
then processed through hidden layers and weighted during 
training to output the desired external data [37]. By such an 
approach, NNs can be used to describe and predict allostatic 
responses using data describing the increase or decrease in 
concentration of certain immune modulators (e.g., microRNA's), 
neuropeptides (e.g., norepinephrine) and hormones (e.g., steroids), 
and viral proteomics data (e.g., gene sequence). 

 
To be clear, DL algorithms of viral immunity can be approached 
and designed in vastly different ways, and with a broad spectrum 
of predictors, depending on the desired quantifiable input meta-
data and output. The choice of variable can range from the very 
specific, such as the interaction between TcR[αβ]/MHC-I with 
specific viral coat or envelope proteins [38], to broader immune 
physiological biomarkers (e.g., glycoprotein acetylation [GlycA]) 
that alter immune homeostasis or promote allostasis [39-41]. 
Alternate DL algorithms, including Deep Ensemble Learning 
(DEL), proffer integrated multiple models for more broad-base, 
precise, accurate and quantifiable predictions [42].  
 
Modeling of immunity in general and permafrost viral immunity in 
particular cannot be, and must not be a static input-output problem. 
Rather, it requires constant updating of cellular and humoral 
immune predictors, molecular effectors, novel and ancient viral 
species and peptides, and other variables. Computer-based 
modeling of viral immunity must have the inherent ability to be 
updated and reinforced based on emerging new data. In that 
context, deep reinforcement learning (DRL) models [43] are 
particularly useful in predicting new and emerging epidemics and 
pandemics.   
 

Specific applications of AI, from DL to DEL and DRL, to permafrost 

viral immunity, must be trained with fundamental and clinical 
immunology findings as well as data on existing viruses, and on 
novel and ancient viral particles released by melting permafrost. As 
fresh research evolves, the models must be updated and refreshed, 
and optimized anew [44,45]. 
 
Furthermore, the field of AI is fast advancing, and new models and 
algorithms rapidly developed. Case in point and with respect to 
gaining a better understanding of the role of interconnected NNs in 
modeling immune surveillance, generative adversarial networks 
(GANs) is a novel DL-based approach that employs two 
interconnected neural networks that compete to generate realistic 
representations. One network generates synthetic outputs, while 
the other network discriminates between the generated outputs and 
real data.  
 
This adversarial process drives the GANs to produce highly 
convincing and lifelike simulations, proffering an accurate and 
realistic visualization of biological interactions. GANs may better 
model immunity, including the emergence of yet unknown viral 
entities and their interaction with CD8-mediated immune 
responses. MutaGAN [46] and other GAN-related frameworks 
[47,48] yield the virtual creation of potentially novel or ancient 
viruses to (re)appear in the future, and predict their statistical 
potential to evolve. 
 
In brief, ML can lead to the elucidation of the evolution of ancient 
hierarchical orthologous viral groups, based on certain patterns of 
mutations. In certain cases, the evolution of viruses is dominated by 
loss of distinct features and components of the genome [49], which 
can determine the epidemic and pandemic potential of new viral 
species, strains or variants [50]. These techniques (e.g. MutaGAN) 
are bound to lead to a more nuanced understanding of the general 
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evolution of viruses and the corresponding viral immunity.  
 
Novel and ancient viruses released by melting permafrost may be 
found to interact with greater fit than anticipated with the human 
genome. The wide variety of ML models now at our disposal will 
be most useful in that respect [49, 51].  
 
The oral and oro-pharyngeal cavities, being the first port of entry of 
most air-borne viruses, as is the case for many fomite-borne viruses 
as well, can be anticipated to be the initial sites of permafrost viral 
immunity. Immune tolerance in the oral mucosa is essential to the 
recognition of native pathogens arising from permafrost thawing 
and the increase of greenhouse gasses (i.e., CO2 methane gas). It 
follows that accurate development of ML modeling and immune 
tweening must consider sites of oral and oral-pharyngeal cavities as 
a first line of immune defense against ancient pathogens as well as 
the complexities of permafrost thawing (i.e, active layer thickness, 
and seasonal averages). Given that the largest extent of the immune 
response in the oral and oro-pharyngeal cavities is mediated by 
mucosal immunity, with systemic immunity being relegated mostly 
to periodontal pockets [52-54], any AI algorithm designed for that 
purpose need to incorporate mucosal immunity predictors and 
data, to ensure accurate immune tweening and statistical predictive 
power.  
 
In conclusion, it is self-evident that, given the vast and expansive 
potential meta-data that requires analysis and interpretation, 
increased collaboration between AI experts and clinical and 
fundamental immunologists is critical.  Whereas the immune 
response must not be oversimplified as an artificial model, careful 
selection of input types is required to ensure reducing the need for 
a large quantity of input types and capacity to the essential 
minimum. By leveraging diverse ML algorithms and models, the 
most meaningful hyper-parameters that have significant 
associations will be optimized. That, in turn, will lead to increased 
predictability and effectiveness, an approach that is already bearing 
fruit in the discovery of predictive biomarkers for certain cancers 
[53, 55]. 
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