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Abstract: 
Protein-protein interactions (PPIs) can be classified as permanent or transient interactions based on their stability or lifetime. 
Understanding the precise details of such protein interactions will pave the way for the discovery of inhibitors and for understanding the 
nature and function of PPIs. In the present work, 43 relevant physicochemical, geometrical and structural features were calculated for a 
curated dataset from the literature, comprising of 402 protein-protein complexes of permanent and transient categories, and 5 different 
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Supervised Machine Learning models were developed with Scikit-learn to predict transient and permanent PPI. Additionally, deep learning 
method with Artificial Neural Network was also performed using Tensor Flow and Keras. Predicted models achieved accuracy ranging from 
76.54% to 82.71% and k-NN has achieved the highest accuracy. Detailed analysis of these methods revealed that Interface areas such as 
Percent interface accessible area, Interface accessible area and Total interface area and the parameters defining the shape of the PPI interface 
such as Planarity, Eccentricity and Circularity are the most discriminating factors between these two categories. The present method could 
serve as an effective tool to understand the mechanism of protein association and to predict the transient and permanent interactions, 
which could supplement the costly and time-consuming experimental techniques. 
 
Key words: Transient and Permanent Protein-Protein Interactions; Machine Learning; Scikit-learn; Deep Learning; Tensor Flow. 

 
Background: 
A host of biological and cellular activities, such as gene replication, 
transcription, translation, cell cycle regulation, signal transmission, 
and immune response, rely on protein-protein interactions. Protein-
protein interactions (PPIs) are vital for understanding how proteins 
work together in the cell to accomplish biological tasks in a 
coordinated manner [1, 2]. An estimated 130,000 to 650,000 different 
types of protein–protein interactions exist in human cells [3-5]. Such 
interactions belong to permanent or transient categories of 
interactions, which play a specific role in cellular activities [6, 7]. 
Permanent complexes such as enzyme-inhibitor, antigen-antibody, 
and oligomeric enzyme are composed of proteins that bind tightly 
and permanently, whereas transient complexes weakly associate 
and form just temporarily to produce specific effects like signal 
transduction, disease related pathways and cell cycle [8, 9]. These 
interactions are distinguished by their dissociation constant (Kd) as 
permanent complexes having dissociation value in the nM range 
(1×10-9 M) or lower [10, 11], whereas transient complexes have 
dissociation constant in the µM range or higher (1×10-6 M) [12-14]. 
The ability to manipulate these protein–protein interactions could 
be useful in the development of PPI modulators, which could open 
up new avenues for biologics research [15, 16]. A deep structural 
understanding of such complexes at the atomic level will enhance 
our knowledge of biological processes and may 
facilitate biomedical and biotechnological interventions easier. 
Earlier, investigations have been carried out primarily using 
sequence-based features [17-20] to elucidate the differences 
between permanent and transient protein interactions. Permanent 
interaction sites have been found to possess more hydrophobic 
residues, more conserved, and their interfaces contain fewer gaps in 
multiple sequence alignments of protein families. On the other 
hand, transient interfaces have more polar residues, and they form 
smaller interfaces than permanent interfaces [19]. Machine-learning 
techniques have proven to be effective in predicting and 
distinguishing different types of PPIs [21-23]. Recently, a wide 
number of state-of-the-art techniques to predict protein-protein 
interactions have been reviewed [24]. In the present study, we have 
employed several supervised machine learning and deep learning 
methods to classify transient and permanent interactions by 
calculating various physicochemical, geometrical and structural 
factors that define transient and permanent protein interactions. In 
our calculations, different properties like Percent interface 
accessible area, Interface accessible area, and Total interface area, 
Planarity, Circularity and Eccentricity were discovered to be 
capable of discriminating between transient and permanent protein 

interactions. Our approaches of diverse supervised machine 
learning algorithms and Artificial Neural Networks (ANN) were 
able to differentiate 402 protein–protein complexes with an 
accuracy of 76.54 to 82.71%.  
 
Materials and methods: 
Dataset preparation and processing:  
Dataset of protein complexes to study transient and permanent 
interactions were compiled from the literature [19-21]. The dataset 
contains a total of 402 transient and permanent protein complexes 
containing 201 complexes belonging to each category (List of PDB 
entries included in Supplementary Table S1).Various categories of 
structural, physicochemical and geometrical descriptors were 
calculated using 2P2I inspector [25]. We have calculated a total of 
43 different features such as total interface area, gap volume, 
percent interface accessible surface area, neutral/polar/nonpolar 
contribution, planarity, circularity, eccentricity and others (listed in 
Figure 1). Missing data and outliers were cleaned and data were 
pre-processed using Scikit-learn Standard Scaler utility. All 
descriptors were rescaled between 0 and 1. 
 
Supervised Machine Learning with Python:  
Scikit-learn was used to construct the classification models and 
training the data to determine the best parameters for the training 
model using different algorithms such as k-Nearest Neighbour (k-
NN) [26], Logistic Regression [27], Decision Tree [28], Random 
Forest [29] and Support Vector Machine (SVM) [30]. Pandas v1.1.5, 
matplotlib v3.2.2, NumPy v1.19.5, SciPy v1.4.1, Scikit-learn v0.22.2 [31], 
and seaborn v0.11.2 were used to perform the machine learning. In 
all our models, the datasets were divided into training and test sets, 
in the ratio of 80:20. In k-NN, several distance metrics were 
evaluated in Scikit-learn, including k = 1 to 5 nearest neighbours, to 
predict the data. In Random Forest, the number of decision trees 
was set as 500. For Logistic Regression, different logistic regression 
classifiers have been employed by varying C value from 100 to 1000 
and the best accuracy was achieved with C=500. The precision 
score, sensitivity or recall and F1 score, which is the weighted 
average of both the precision score and recall were calculated for 
each algorithm (detail description about these parameters provided 
in the supplementary material). These performance measurements 
were calculated for each class that is transient and permanent and 
the geometric mean (G-mean) of sensitivity and specificity was also 
computed (Table 1). We performed variable importance calculation 
using Boruta and Random Forest in Python as shown in the (Figure 
1). 
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Figure 1: Feature importance plot performed with Random Forest. Feature significance score is displayed on Y-axis. Definition of features 
is as per reference [25] 
 
Table 1: Performance measurements of Machine learning models obtained With Scikit-learn. 

ML  
Method 

Accuracy Class Sensitivity G-Mean of Precision F1 Score 

Sensitivity  
and  

Specificity 
k-NN   Transient 0.804 0.804 0.846 0.824 

  Permanent 0.85 0.804 0.809 0.828 
82.71 Average 0.827 0.804 0.827 0.826 

Random  
Forest 

  Transient 0.756 0.813 0.861 0.805 
  Permanent 0.875 0.813 0.778 0.823 

81.48 Average 0.815 0.813 0.819 0.814 
Logistic  

Regression 
  Transient 0.804 0.801 0.804 0.804 
  Permanent 0.8 0.801 0.8 0.8 

80.24 Average 0.802 0.801 0.802 0.802 
Decision  

Tree 
  Transient 0.75 0.776 0.789 0.769 
  Permanent 0.804 0.776 0.767 0.785 

77.77 Average 0.777 0.776 0.778 0.779 
SVM   Transient 0.744 0.766 0.8 0.77 

 76.54 Permanent 0.789 0.766 0.731 0.758 
  Average 0.766 0.766 0.765 0.764 

 
Deep Learning with Tensor Flow:  
We used Tensor Flow and Keras to implement the deep learning. 
Deep learning models [32] are made up of multiple computational 
layers that process the input in a hierarchical manner. Each layer 
takes an input and outputs a non-linear function of a weighted 
linear combination of the input values. A deep architecture is 

created when the output of one processing layer becomes an input 
to the next processing layer. Networks with two hidden layers were 
adopted to compare their performance in our study. We used ReLU 
as an activation function for the two hidden layers and sigmoid 
function for the output layer.  As earlier, the data were divided into 
training and test set in 80:20 ratios. 
 
Results and discussion: 

Based on 43 descriptors, several machine learning and deep 
learning methods were attempted to arrive at consensus results. 
The accuracy of the methods and other performance evaluation 
metrics were calculated and reported in Table 1. The accuracy of 
different methods achieved, range between 76.54% to 82.71% 
prediction of the data using physicochemical, geometrical and 
structural features. The highest accuracy of 82.71% was achieved 
with k-NN (Table 1). The values of precision and F1 score of the 
method were 0.827 and 0.826, respectively. The other supervised 
machine learning algorithms – Random Forest, Logistic Regression, 
Decision Trees and SVM have yielded accuracies of 81.48%, 80.24%, 
77.77% and 76.54%, respectively. The deep learning with ANN 
achieved the accuracy of 79% with 500 epochs and with adam as the 
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optimizer for 43 input dimensions. To elucidate the relative feature 
importance in transient and permanent categories, the feature 
contributions were also calculated. One of the most discriminating 
category of features in this classification procedure is interface 
areas, namely, Percent interface accessible area, Interface accessible 
area and Total interface area with feature importance score of 
0.0437, 0.0436 and 0.036, respectively. The value of these parameters 
for transient PPI have been observed significantly lower as 
compared to permanent PPI. The average value of Percent interface 
accessible area, Total interface area & Interface accessible area for 
transient PPI category have been observed to be 10.98%, 2594.4Å2 & 
1291.2Å2, respectively, as against 15.11%, 3819.1Å2 & 1911.5Å2, 
respectively for in permanent PPI category.  
 
The second most important category of discriminating features is 
the one that describe the shape of interface such as Planarity, 
Eccentricity and Circularity with feature importance scores of 0.037, 
0.034 & 0.033, respectively. The Planarity describes the rough or 
bent interface [25, 33] and calculated as root mean square deviation 
(RMSD) for all interface atoms from the best fitted least square 
plane of all the interface atoms. The average planarity coefficient in 
transient PPI category varies between 0.29-7.2 Å (Avg. 3.02 Å) as 
compared to 0.57-10.6 Å (Avg. 3.8 Å) in permanent PPI category. 
Eccentricity (roundness of the interface and opposite to the 
curvature) suggest slightly low curvature in transient category, 0.2-
0.99 (Avg. 0.73) than in permanent PPI, 0.12-0.979 (Avg. 0.68). 
Another such measure i.e., Circularity coefficient is also found to be 
slightly lower that varies between 0.123-0.98 (Avg. 0.61) in transient 
PPI than 0.20-0.99 (Avg. 0.68) in permanent PPI category. A related 
parameter of interface shape is the Gap volume with a feature 
importance score of 0.023. In transient categories the average gap 
volume was slightly higher 7775.2 Å3 as compared to permanent 
category having a value of 7717.1 Å3. The third most categories of 
discriminating features are the percentage of beta character with a 
feature important score of 0.031. For transient PPI its value varies in 
between 0-100 (Avg. 21.6), and in permanent PPI the value is 
higher, which has been found to be 0-94 (Avg. 26.6).  
 
Conclusion: 

Transient and permanent protein–protein interactions are 
significant in many biological processes. In the present work, we 
used a dataset, compiled from the literature and extracted 
physicochemical, geometrical and structural features from each of 
the 201 permanent and transient protein-protein complexes. 
Interface areas, shape of the interface and percent beta character are 
the three distinct categories of features, which prominently 
discriminate transient and permanent interactions. The method we 
proposed here could be useful in engineering permanent or 
transient PPIs, notably in the conversion of permanent docking 
interfaces to transient docking interfaces or vice versa using 
interface mutations [16]. The ability to manipulate these protein–
protein interactions should aid in structure-aided biologics 
discovery. In addition, the present methodology may also be used 

to classify other similar types of interactions such as protein-DNA 
and protein-RNA interactions.  
 
Associated Data: 
Supplementary Materials 
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Supplementary materials: 
 
Table S: Dataset (PDB Ids) of 402 transient and permanent protein-protein complexes. 

Transient Protein Interaction Dataset 

1a00 1cjd 1h2t 1o0v 2ckl 2pmw 3gb8 4drx 5hzp 
1a0o 1cmi 1h4r 1oan 2d07 2pmz 3hd7 4fqx 5jne 
1a2w 1cqp 1hl6 1occ 2dd8 2qkl 3hu1 4g8f 5k93 
1a37 1csg 1HQM 1rkc 2egd 2ql5 3i6l 4gdk 5kdm 
1a7x 1d8t 1hvv 1S5L 2erj 2qxv 3jua 4hsu 5sy8 
1a8M 1dev 1hxb 1sko 2ewy 2r83 3kwq 4ifd 5vok 
1ab9 1dm4 1i3q 1svx 2fntA 2vhs 3kzi 4il6 5wsv 
1afv 1e9h 1ifd 1tvp 2gg2 2wii 3m99 4jk1 6cnr 
1agr 1eba 1ivo 1uwh 2gic 2z31B 3nc1 4k71 6ea7 
1ahw 1egw 1iw7 1vf5 2gro 3a0b 3prx 4k94 

 1an7 1ejl 1izl 1vgl 2h4m 3al4 3rk2 4m40 
 1ao6 1eo8A 1izn 1w26 2hwn 3b8e 3s4s 4mng 
 1aoi 1es7 1jh5 1wp8 2hxY 3bpo 3uzq 4qrs 
 1aqd 1ezv 1jqj 1x79 2iae 3bw1 3vbf 4qyz 
 1azz 1f66 1jt3 1xu7 2iff 3bwu 3vbfC 4tvp 
 1b34 1fjg 1k8k 1z2c 2jjs 3csy 3w97 4w6bA 
 1b3u 1foc 1kla 1z8j 2kwf 3d85 3wmm 4wxv 
 1b50 1fs1 1l1o 1zru 2l2i 3ddc 3wod 4y6a 
 1bcc 1g3j 1ldj 1zy8 2lr1 3dhg 3wxe 5ayw 
 1be3 1g8q 1lm8 1zys 2mre 3dx9 3zk6 5c0z 
 1bmf 1gag 1m4r 2a2y 2nl9A 3e4z 3zni 5dis 
 1bqh 1gfw 1m63 2a73 2O8v 3e7a 4bsv 5dn6 
 1c9b 1ggk 1mg2 2b4j 2oj5 3fwb 4c8q 5fv1 
 1cfm 1gzh 1nys 2b5l 2pm6 3g7v 4cc9 5hlu 
 

 
Permanent Protein Interaction Dataset 

1A3C 1FCD 1MJL 3GRS 1OC0 1DCE 1JSG 2AHJ 1KXP 
1A6D 1FIP 1MKA 3GTU 1OPH 1DJ7 1JV2 2CCY 1BVN 
1A9X 1FM2 1MOQ 3PCG 1P2C 1E9Z 1KBA 2ILK 1DFJ 
1AD3 1FRO 1NOX 3PGH 1PXV 1EFV 1KFU 1REQ 1DQJ 
1AF5 1FS0 1NSY 3RUB 1R0R 1EG9 1KPF 1RFB 1EAW 
1AFW 1FXW 1OAC 3SDH 1RV6 1EP3 1HXM 1RPO 1EER 
1AHJ 1G72 1OPY 3SSI 1T6B 1EUD 1HZZ 1RTH 1EMV 
1AJS 1G8J 1OTP 4KBP 1UUG 1BSR 1I1Q 1SES 1EZU 
1ALK 1G8K 1PAU 4MON 1VFB 1BUO 1I3R 1SKY 2JEL 
1AMK 1GK9 1PGT 5CSM 1WDW 1CCW 1I4F 1SLT 
1AOM 1GO3 1PHN 5TMP 1WEJ 1CD1 1I7B 2J0T 
1AOR 1GOT 1PRE 9WGA 1YVB 1CG2 1IAK 1F34 
1AQ6 1GVP 1PUC 1ACB 1ZLI 1CHM 2I9B 1FLE 
1AUI 1H2R 1QDU 1AHW 2ABZ 1CMB 1SMN 1FSK 
1AUO 1HCN 1QGW 1ATN 2B42 2I25 1SMT 1GPW 
1AW8 1HFE 1QH1 1AVX 2GOX 1ICW 1SOX 1GXD 
1B4U 1HGE 1QLA 1AY7 2HRK 1IHF 1SPP 1HCF 
1B5F 1HJR 1QOP 1BJ1 1CP2 1IMB 1TOX 1I2M 
1B7Y 1HLR 1QS0 1BRS 1CSH 1IRD 1TRK 1IBR 
1BAM 1HR6 1QTN 1M10 1CTT 1ISA 1TYS 1IQD 
1BIF 1HSS 1KXQ 1MAH 1CZJ 1ISO 1UBY 1JIW 
1BMV 2LTN 2RSP 1NB5 1D09 1JHG 1UTG 1JPS 
1KVD 1LUC 2TCT 1NCA 1D2V 1JK0 1WGJ 1JTG 
1EXB 1LYN 2TGI 1NSN 1DAA 1JRO 1XSO 1K5D 

 

Parameters for evaluation of performance of the machine learning methods  
 
True Positive Rate (TPR)/Sensitivity/Hit 
Rate/Recall  
 

=           
     

                                     (1) 

True Negative Rate 
(TNR)/Specificity/Selectivity      

=             

     
 

(2) 

FPR (False Positive Rate) =                          

     
 

(3) 
 

FNR (False Negative Rate)      =            
     

               (4) 
 

Precision =                 

     
      (5) 

Recall =                                 TPR   (6) 
 

F1 Score = 
    

                  

                
 

(7) 

The accuracy is defined as: 
Acc =                              

           
   (8) 

 

Where TP stands for true positives. TN for true negatives, FP for false positives, and FN for false negatives, predicted by the classifier. The 
F1 score is defined as the harmonic mean of precision and recall: 

 

 



ISSN 0973-2063 (online) 0973-8894 (print)  

©Biomedical Informatics (2023) Bioinformation 19(6): 749-753 (2023) 
 

754 

 

 
 


