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Abstract: 
Many age-progressive diseases are accompanied by (and likely caused by) the presence of protein aggregation in affected tissues. 
Protein aggregates are conjoined by complex protein-protein interactions, which remain poorly understood.  Knowledge of the 
proteins that comprise aggregates, and their adherent interfaces, can be useful to identify therapeutic targets to treat or prevent 
pathology, and to discover small molecules for disease interventions. We present web-based software to evaluate and rank influential 
proteins and protein-protein interactions based on graph modelling of the cross linked aggregate interactome. We have used two 
network-graph-based techniques: Leave-One-Vertex-Out (LOVO) and Leave-One-Edge-Out (LOEO), each followed by dimension 
reduction and calculation of influential vertices and edges using Principal Components Analysis (PCA) implemented as an R 
program. This method enables researchers to quickly and accurately determine influential proteins and protein-protein interactions 
present in their aggregate interactome data.  
 
Availability:  

This tool is available online at https://simlab.uams.edu/LOOA/ and a detailed tutorial is provided at 
https://simlab.uams.edu/LOOA-tutorial/. 

 
Background: 
Protein aggregation is a hallmark of most age-related diseases 
including Alzheimer's disease (AD), cardiovascular disease 
(CVD), Parkinson’s disease (PD), Huntington’s disease (HD), 
and many other age-progressive diseases. In the case of AD, 
protein aggregation is thought to be initiated by “seed” proteins, 
amyloid beta (Aβ) and hyper phosphorylated tau (hP-tau) [1]. 
As these oligomers expand, they recruit other proteins that 
transiently unfold or misfold, chiefly through hydrophobic 
interactions with amyloid or neurofibrillary tangles (NFTs) [2, 3].  
Several tools have been made available that help in analyzing 
proteomics data [4-7]. We have previously shown that analysis 
of crosslinking data, obtained by permeating aggregates with 
small “click reagents”, allows us to identify and quantify 
protein-protein interactions in an aggregate (i.e., the aggregate 
interactome). We first followed this strategy for cultured 
neuroblastoma cells bearing a familial-AD double mutation 
(SY5Y-APPSw) [8]. We analyzed interactome data from 
crosslinked aggregates to rank influential proteins based on the 
total number of interactions in the SY5Y-APPSw interactome.  
Relative to wild-type neuroblastoma cells (SY5Y-WT), SY5Y-
APPSw aggregate proteins have far higher connectivity.  We now 
show that each protein’s influence can be predicted based only 
on the topology of the aggregate interactome, through a novel 
approach based on graph modeling. 
 
In order to more fully utilize the cross linked aggregate-
interactome data, we developed a web-based tool to prioritize 
proteins (vertices or nodes) and protein-protein interactions 
(edges) in the SY5Y-APPSw interactome, by their predicted 
influence on the complexity (degree sum) of the aggregate 

network.  We have primarily used R programming to develop 
two programs: Leave-One-Vertex-Out (LOVO) and Leave-One-
Edge-Out (LOEO) analyses. LOVO analysis deletes one vertex at 
a time and calculates the influence of that node, as the factor by 
which its deletion reduces the total complexity, ∑ (all node 
degrees) of the interactome.  LOEO instead deletes one edge at a 
time and calculates edge influence in the same way. The 
influence is then considered as a function of diverse network 
descriptors such as Degree, Eigenvector Value, Betweenness, 
Closeness, and Clustering Coefficient.  Calculating and 
accounting for the influence of vertices and edges provides 
insights into the roles of proteins and their interactions in 
aggregate formation and stability, and also helps to identify 
candidate targets for drugs that act as protein-protein interaction 
inhibitors (PPII) to reduce aggregate burden, and thus to 
ameliorate diseases that feature protein aggregation. Therefore, 
it is of interest to describe a Leave-One-Out-Analysis (LOOA) 
web-based tool to predict influential proteins and interactions in 
aggregate-crosslinking proteomic data. 
 
Methodology: 
Usage:  

The web server for conducting Leave-One-Out-Analysis is 
provided under Online Tools in https://simlab.uams.edu. The 
basic workflow of this tool is explained in Figure 1. It takes input 
in Comma Separated Value (.csv) format. The input file must 
have Source and Target as its column headers, with the list of 
aggregate proteins as row values (Figure 2). There are five 
interaction properties that are calculated for LOVO and LOEO, 
which jointly characterize the interactome connectivity 
increment contributed by each vertex or edge. 
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Figure 1: Workflow for LOOA design and development 
 

 
Figure 2: Input data structure.  Data are entered in .csv format, 
comprising Source and Target columns, with source proteins 
and target proteins as values from SY5Y-APPSw aggregate-
interactome data. 

Degree Centrality (DC): 

The Degree Centrality of a vertex is the number of edges or 
interactions it has in the network graph. The higher the degree of 
a vertex or node implies greater DC indicating its influence.  
 
Eigenvector Centrality (EC): 
Eigenvector Centrality is an algorithm for network graphs that 
measures the transitive influence of the vertex. Vertices with 
high Eigenvector Centrality score are connected to many other 
vertices which themselves have high EC scores. 
 
Betweenness Centrality (BC): 
Betweenness Centrality measures the extent to which a vertex 
lies in the path between other vertices. Higher BC scores connote 
higher influence of a node in the network, by conjoining other 
vertex clusters; thus, removal of a high-BC vertex will disrupt 
assembly of large aggregates.  
 
Closeness Centrality (CC): 
Closeness Centrality measures the average remoteness of a 
vertex from all other vertices, calculated as the sum of the 
inverse of distances. Vertices with high CC score have relatively 
short distances to all other vertices, enabling efficient spread of 
information through the network, and contribute to their 
influence.  
 
Global Clustering Coefficient (GCC) 
GCC differs from other centrality properties; it is a measure of 
the density of triangles in a network. It measures the extent to 
which vertices in a graph tend to cluster together. Global 
clustering coefficients are used in both LOVO and LOEO and are 
based on triplets (or triangle) of nodes. Closed triplets occur 
when there are three vertices (A, B, C) connected to each other, 
forming three edges (A-B, B-C, and C-A) and a closed triangle, 
whereas “open triplets” are those in which three vertices are 
connected, but form only two edges (e.g., A-B and B-C). The 
global clustering coefficient is calculated as the number of closed 
triplets divided by the total number of triplets (open or closed) 
in the graph.  
 
Aggregate proteins are uploaded as shown in Figure 2, and 
LOVO and LOEO are conducted.  Five network properties (NP) 
are calculated, and recalculated upon sequential removal of 
individual vertices or edges; influence scores are calculated as 
ΔNP = NPinitial ‒ NPminus-protein-i.  PCA reduces the dimensionality 
of NP inputs, yielding a composite influence score for each 
analysis. Aggregate interactome data for SY5Y-APPSw cells [8] 
illustrate the procedures involved.  
 

[1] Figure 3A shows a LOVO matrix of correlations between 
NP changes after removal of each vertex. Influences by 
EC, DC and BC are inter-correlated, while GCC is 
unrelated to other network properties. 
 

 

[2] Principal Components Analysis (PCA) reduces 
dimensionality to yield composite scores. N Components 
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are selected based on Kaiser’s rule (eigenvalue ≥1) [9] OR 
variance explained ≥10%; exceeding either threshold 
allows inclusion. A histogram displays the eigenvalue for 
each dimension and its “%variance explained” (Figure 

3B). Here, LOVO accepts three principal components, 
explaining 92% of total variance.  
 

[3] Cos2 (squared cosine) summarizes relative representation 
of NPs by dimensions (calculated as PCA values 
squared). For LOVO, the cos2 value of PC1 (Dim.1) is 
highly correlated to EC, DC, and BC scores, with cos2 
correlation values ≥0.72; while PC2 (Dim.2) has highest 
correlations to CC and GCC; and PC3 (Dim.3) has the 
highest correlation to GCC (Figure 3C). The combination 
of PC1, PC2, and PC3 thus represents all five properties. 
Omission of PC3 would have little effect, since GCC is 
well represented by PC2.  
 

[4] A diagram combining biplot and cos2 (Figure 3D) shows 
two positively correlated variables grouped together in 
the upper-right quadrant while negatively correlated 
variables lie on opposite quadrants. The representation of 
DC and EC in the first two components is greater than 
other scores, indicated by greater distance from the origin 
and larger cos2 values.  
 

[5] The LOEO correlation matrix (Figure 4A) reveals highly 
inter-correlated influences of EC, DC, and CC scores, 
while the GCC influence is unrelated to other NPs.  

 

[6] PCA here indicates that the first two components have 
eigenvalues ≥1 and variances explained >10%, both 
dictating their selection; they together explain >84% of 
total variance (Figure 4B). 

 

[7] Cos2 values of dimensions/components indicate that 
Dim.1/PC1 is correlated to EC, DC, BC, and CC scores 
>0.7, whereas Dim.2/PC2 has a near-perfect 0.97 
correlation to GCC. Therefore, selection of the first two 
components is justified since the first two components 
together represent all NPs calculated (Figure 4C).  

 

[8] The combined biplot/cos2 plot (Figure 4D) shows EC, 
DC, CC, and BC clustered together, reflecting their high 
inter-correlation; they are well represented by Dim. 1, 
while GCC is largely orthogonal to other properties, and 
very well represented by Dim.2/PC2.  

 

[9] Histograms (Figure 5) show the top 10 influential proteins 
and interactions, after LOVO and LOEO respectively.  

 
Figure 3: Principal components analysis (PCA) after Leave One Vertex Out (LOVO) analysis. (A) Correlation matrix summarizing the correlations 
among individual network descriptors, ranging from very high positive correlation (red) to very high inverse correlation (blue). White signifies that 
two variables show little or no correlation. (B) Bar plot showing top 5 dimensions/principal components with their eigenvalues; numbers over bars 
indicate %-variance explained. (C) Cos2 correlation plot showing the quality of representation of each network property (NP) with each principal 
component (PC or dimension, Dim). (D) Biplot and Cos2 plots are combined to form a “hybrid plot” showing correlations between network properties 
and quality of representation of each property by two components (indicated by arrow length and their cos2 values represented by color (see inset 
key). 
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Discussion: 

The influence scores of all aggregate proteins and their protein-
protein interactions are calculated based on LOVO and LOEO, 
with further characterization by PCA. We previously 
characterized influential proteins in SY5Y-APPSw aggregate-
interactome data based only on degree and number of 
interactions of each protein [8]. We partitioned this aggregate 
interactome into 17 Mega-hubs (≥100 interactions), 77 Major 
hubs (50 – 99 interactions), 248 Midi-hubs (10 – 49 interactions) 
and 192 Mini-hubs (6 – 9 interactions). After conducting LOVO 
analysis, 13 out of 17 mega-hub proteins fell in the top 25 
influential proteins, including numerous RNA-binding proteins 
such as EIF3A, SRRM1, DDX46P, SRSF6, TR140, and RBM25 (see 
ref. [10]). Other mega-hubs were centered on cell-cycle proteins 
such as AHNK (inhibitor of cell proliferation) and KI67 (which 
prevents aggregation of mitotic chromosomes), as well as 
PRC2C (stress granule assembly), SYNE2 (binds F-actin, tethers 
nucleus to cytoskeleton), RRBP1 (potassium homeostasis 
regulator), and RBBP6 (inhibitor of apoptosis).  Of 77 major-hub 
proteins, 12 were among the top 25 influential proteins: MAP1A, 
RFC1, ZN638, NIPBL, RNPS1, SAFB1, TOP1, BAZ1A, KMT2A, 
HNRPR, BCLF1 and TRIPC, all of which were previously 
implicated in AD [11-14]. Also, RNAi knockdowns of genes 

encoding EIF3A, SRSF6, RBBP6, ASPM, RFC1, and RNPS1 
improved chemotaxis significantly in C. elegans strain CL2355, an 
AD model expressing human Aβ1–42 in all neurons leading to 
age-progressive or thermal-induction-dependent loss of normal 
chemo-attraction to n-butanol. Inclusion of over 50% of mega-
hub proteins, and about 16% of major hub proteins, among the 
top 25 influential vertices predicted by LOVO, is consistent with 
a sharp drop in aggregate complexity upon removal of any one 
of these proteins. These observations support the premise that 
Leave-One-Vertex Out identifies influential proteins in the 
aggregate interactome. Influential protein-protein interactions 
predicted by Leave-One-Edge Out (LOEO) analysis highlights 
key interactions between influential vertices with mega-hub 
proteins, along with several major-hub proteins previously 
implicated in AD such as PRP8 (regulation of spliceosomes), 
ATRX (chromatin remodeling), ELYS (nuclear pore assembly), 
SPB1 (rRNA methylation), and PAIRB (proteasomal degradation 
and apoptosis) among the top 25 influential protein-protein 
interactions. This implies that disruption of these PPIs would 
reduce aggregate burden and may lead to the discovery of 
beneficial small molecules that disrupt these PPI interfaces in 
aggregates.     

 

 
Figure 4: Principal components analysis (PCA) after Leave One Edge Out (LOEO) analysis. (A) Correlation matrix summarizing the correlations 
among individual network descriptors, as in Fig 2A.  (B) Bar plot showing top 5 dimensions/principal components with their eigenvalues; numbers 
over bars indicate %variance explained. (C) Cos2 correlation plot showing quality of representation of each NP with each principal component (PC or 
Dim). (D) Biplot and Cos2 plots are combined to form a “hybrid plot” showing correlations between network properties and quality of representation 
of each property by two components (indicated by arrow length and their cos2 values indicated by color (see inset). 
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Figure 5: Top influential proteins and protein-protein interactions in SY5Y-APPSw aggregate interactome data.  (A) Bar plot of top 10 
influential vertices (nodes or proteins) after conducting LOVO analysis, sorted by combined influence scores. (B) Bar plot of top 10 
influential protein-protein interactions after conducting LOEO analysis, sorted by combined influence scores. 
 
Conclusions: 

Leave-one-out-analyses, comprising Leave-One-Vertex-Out 
(LOVO) and Leave-One-Edge-Out (LOEO) modules, are efficient 
and useful computational methods to predict influential proteins 
and protein-protein interactions (respectively) once a complex 
aggregate interactome has been defined by cross-linking 
proteomics. This method is valuable for determining influential 
proteins and their interactions in any aggregate isolated from 
tissues, cells, or models of Alzheimer’s, Parkinson’s, 
Huntington’s, or cardiovascular diseases.  Formation and accrual 
of such aggregates are important diagnostic markers, and 
putative causal agents, for age-progressive diseases in general. 
The availability of these web-based tools, presented in a 
convenient and intuitive user interface, will help users to easily 
conduct these analyses, at any level of programming and data-
analysis expertise. For example, the identification of influential 
proteins and interactions that participate in SY5Y-APPSw 
amyloid-aggregate interactomes [8] implicated proteins and PPIs 
that were either previously implicated in Alzheimer's disease or 
involved in important pathways impacting protein homeostasis.  
We expect that pursuit of these proteins is likely to contribute to 
better understanding of etiologic mechanisms that lead to 
Alzheimer's disease.  These proteins may thus hold value as AD 
biomarkers and/or as therapeutic-intervention targets for 
prevention or amelioration of this devastating disease. We 
anticipate that broader use of these analytic/predictive 
computational tools will offer similar targets for intervention in 
other age-dependent diseases. Furthermore, the tools proposed 
here are capable of handling empirical protein-protein 
interaction data derived from other protein crosslinking 

methods, including formaldehyde and other crosslinking agents, 
and PPIs inferred from yeast two hybrid analyses, to implicate 
the most influential proteins observed in complex interactomes.      
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