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Abstract: 

The opportunistic pathogen, Clostridioides difficile owes its extreme pathogenicity for its ability to develop antibiotic resistance and 
recurrent infections.  The current antibiotics used for the treatment are showing declining sensitivity and rising antibiotic resistance. 
Therefore, it is of interest to develop the anti-clostridial drugs to overcome these issues. Hence, we have explored ZINC library to 
find the suitable lead compounds against five target proteins of C. difficile. Multistep virtual screening is performed to find the 
suitable compounds that are checked for their stability using molecular dynamics and are validated in vitro against C. difficile. In our 
study, five compounds viz., ZINC64969876, ZINC13641164, ZINC13691348, ZINC5554596 and ZINC3894278 that inhibit HisC, 
Spo0A, PdcA, DAHP synthase and cyclic-di GMP proteins, respectively have been identified. Further, these compounds were tested 
in vitro against four different isolates of C. difficile and all of them were found to inhibit the pathogen. However, to use these 
compounds as anti-clostridial drugs, further testing needs to be done. The selected compounds from our study are reported for the 
first time as antimicrobial agents against C. difficile. 
 
Keywords: Clostridioides difficile, inhibition, pathogen, compounds, in silico, molecular docking, dynamics, in vitro. 

 
Background: 
Clostridioides difficile (C. difficile), causes wide range of diseases 
from diarrhoea to pseudomembranous colitis (PMC) [1-2]. It is 
the most prevalent pathogen causing hospital associated 
infections and is declared as an urgent threat by CDC (Center for 
Disease Control and Prevention) [3-4]. The main risk factors 
associated with this infection are antibiotic usage; but 
hospitalization, higher age, immunosuppression and severe co-
morbidities can be other factors [5-6]. In addition, other reported 
risk factors include inflammatory bowel disease, enteral feeding, 
gastric acid suppression and cirrhosis [7-8]. Toxins and 
endospores are the main virulence factors linked to the spread of 
disease [9]. C. difficile spores survive in the dormant states till 
favourable condition, and then they germinate in the gut to 
produce vegetative cells that produce toxin. Endospores are the 
major cause of spread and recurrence of C.difficile infection [10]. 
 
In the era of on-going pandemic of COVID 19, the usage of 
antibiotics has been tremendous, that leads to exponential 
increase in C. difficile infection (CDI) rates [11-12]. The 
antimicrobials used for treating CDI include metronidazole, 
fidaxomicin and vancomycin [13-14]. Of these, metronidazole is 
a non-FDA-approved medication and is no longer advised for 
CDI. Fidaxomicin does not perform better in individuals with 
infection of hyper virulent strains. Therefore, only vancomycin is 
the preferred FDA approved drug for the treatment [15-16]. As 
the therapeutic antimicrobial options are limited for CDI due to 
its rising antibiotic resistance and declining sensitivity, there is 
an urgent need for the development of novel anti-clostridial 
drugs [17-21]. Five proteins of C difficile that were reported as 
drug targets were used [22]. Therefore, it is of interest to report 
the molecular docking, dynamics and in vitro analysis of multi-
target inhibitors for Clostridioides difficile. 
 

Methodology: 
Homology modelling:  
The structures of all five drug targets namely HisC, Spo0A, 
PdcA, DAHP synthase and cyclic-di GMP are modelled using 
MODELLER 9v8 [23]. MODELLER was run using protocol given 
by Reddy et al., 2015 [24]. The modelled protein structures were 
selected using lowest DOPE scores and are verified using online 
SAVES (Structural Analysis and Verification Server) server [25-

27].  
 
Ligand preparation and analysis of drug likeliness: 
The 3D structure of drug like was downloaded in 3D format 
from ZINC database [28]. Approximately 11 million compounds 
were downloaded from ZINC database. These compounds were 
virtually evaluated using open source software DruLiTo, for 
their drug like property [29]. DruLiTo filters, namely Lipinski’s 
rule, Veber rule, Quantitative Estimate of Drug-likeliness (QED), 
Ghose filter, BBB rule, CMC 50 like rule and MDDR like rule 
were used to study ADME profile of the compounds. The 
threshold values of the filters were kept at default and 18000 
compounds which follow all the rules of drug likeliness were 
further screened for their toxicity.  
 
Toxicity prediction: 
In silico toxicity evaluation is a crucial step for better lead 
compound selection. It can be done computationally because of 
accuracy, rapidity and can provide results of any compound. For 
toxicity prediction we have used ProTox-II server which results 
in 4000 compounds [30]. Here, we have considered only class V 
and VI compounds for further screening. Figure 1 shows the 
flowchart depicting the methodology used in the current study. 
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Figure 1: Flowchart depicting the methodology used. 
 
Molecular docking: 
It is the crucial step of drug discovery process that is used to 
analyze the conformation and orientation of compound into the 
binding site of a target.  The modeled protein structures of all 
five targets were blindly docked with the filtered 4000 ZINC 
compounds using AutoDock Vina of PyRx 0.8 using default 
settings [31]. Preparation of input files in pdbqt file format, 
energy minimization and virtual screening using vina wizard is 
done according to the protocol given by Dallakyan and Olson, 
2015 [32]. The best 10 hits with lowest binding energy and more 
number of hydrogen bonds for each target were obtained and 
subjected to site specific docking using AutoDock 4.2 [33]. Active 
site for each target is identified using active site predictor [34]. 
Analysis and visualization of the docked molecule was done 
using PyMol software [35].  
 
Molecular dynamics (MD): 
To confirm and calculate the stability, fold and interactions of 
the best docked complex, a 50 ns molecular dynamics simulation 
of the entire five target-ligand complex was carried out using the 
GROMACS v5.0.4 software package [36]. The topology file of 
protein and ligand was generated using all atoms CHARMM36 
force field and Swiss-Param, respectively [37-38]. The complex 
was then placed in a cubic box with a minimum distance of 10 Å 
from the center to the box edge and the solubilization was 
performed using the TIP3P (transferable intermolecular potential 
with 3 points) water model. The system was neutralized by 

adding required number of Na+/Cl− ions and energy was 
minimized using steepest descent algorithm. Equilibration 
simulations were performed under constant NVT and NPT 
ensembles for 100 ps each, temperature was set at 300K and 
pressure at 1 bar. Finally, the production run for all the 
complexes was started at 50 ns. The results were analyzed by 
calculating root mean square deviation (RMSD), root mean 
square fluctuation (RMSF), hydrogen bonds, total energy, radius 
of gyration (Rg) and solvent accessible surface area (SASA).  
 
Antimicrobial assay: 

(A) To test the selected compounds against C. difficile, four 
isolates of C. difficile have been used. Agar well diffusion assay 
and Minimum Inhibitory Concentrations (MICs) was done 
according  to Clinical Laboratory and Standards Institute (CLSI) 
criteria for anaerobes [39]. For agar well diffusion assay, 
antimicrobial susceptibility testing was done on Brucella agar 
plates with a bacterial inoculum in Brain heart Infusion (BHI). 
Six wells (6 mm) were cut into each inoculated agar plate and a 
100 μl aliquot of each diluted solution (50 μg/ml, 100 μg/ml, 150 
μg/ml, 200 μg/ml, 250 μg/ml and control (DW) was pipetted 
into each well. The plates were then incubated in an anaerobic 
chamber at 37°C for 48 h. After incubation, zones of growth 
inhibition were measured to the nearest millimetre. 
 
(B) Broth dilution method was used to find the minimum 
concentration of compound that will inhibit the growth of a 
microorganism. The strains were grown in BHI broth and 
incubated anaerobically at 37°C for 48 h. Compounds to be 
tested were diluted with distilled water to get the different 
concentrations of 100μg/ml, 50μg/ml, 25μg/ml, 12.5μg/ml and 
6.25μg/ml of test compound. Tubes containing 1ml of BHI broth 
was added with 1ml of each concentration of tested compounds. 
The tubes were then inoculated with 20μl of bacterial culture. 
Control tubes were prepared using 1ml of broth with 20 μl of 
inoculums, and their optical density is compared with the test 
compounds. After incubation, optical density (OD) at 600 nm 
was measured and percentage inhibition was calculated using 
the formula: 
 

% Inhibition =
                       

           
  x 100 

 
Results and Discussion: 
Protein modeling of all five drug targets namely HisC, Spo0A, 
PdcA, DAHP synthase and cyclic-di-GMP performed using 
MODELLER, yielded a full length model of these targets. Figure 

2 shows the cartoon representation of all the five modeled 
proteins. The structures are validated using online SAVES server 
whose data validate our modeled structure. All the modeled 
protein targets show good ERRAT quality factor for protein 
conformation. In addition to this, more than 94 percent of 
residues fall in core, allowed and generously allowed region of 
Ramachandran plot, thereby validating our structures. 
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Figure 2: Cartoon representation of all five modeled protein structure (A) sporulation transcription factor (Spo0A),  (B) c-di-GMP 
phosphodiesterase (PdcA),  (C) histidinol-phosphate transaminase (HisC), (D) 3-deoxy-7-phosphoheptulonate synthase (DAHP 
synthase) and ( E) bifunctional diguanylate cyclase/ phosphodiesterase (cyclic-diGMP). 
 
Table 1: Different filters and their threshold used to find the drug likeliness property of the compounds.  

Name of Filters Parameters 

Lipinski Rule Molecular Weight <=500D, LogP<=5, H-Bond Donor<=5, H-Bond acceptor<=10 
Ghose Filter Molecular Weight = 160 to 480D, LogP=-0.4 to 5.6, Atom Count= 20 to70, Refractivity= 40 to 130  
CMC-50 Like Rule Molecular Weight = 230 to 390D, LogP= 1.3 to 4.1, Atom Count=30 to 55, Refractivity= 70 to 110 
Veber Rule Rotatable Bond<=10, Polar surface area<=140 
MDDR Like Rule No of Rings >= 3, No. of Rigid bonds>=18, Rotatable Bond>=6 
BBB Likeness Rule Molecular Weight <=400D, H Bonds(total)<=8, No. acids=0 
QED Filter Weighted QED>=0.5, Unweighted QED>=0.5 

 
The library of compounds downloaded from ZINC database 
contains approximately 11 million compounds, which are 
filtered based on several parameters as shown in Table 1. The 
initial step of virtual screening is drug likeliness. Generally, only 
Lipinski’s rule is considered for drug likeliness but several 
reports indicated that many promising drugs do not follow 
Lipinski’s rule and alone it is not sufficient to prevent the 
potential exclusion of effective substances [40-41]. Here we have 
considered seven filters that can make them quite efficient and 
effective and are more likely to be transformed into drugs. This 
resulted into approximately 18000 compounds which were 
further filtered based on their toxicity.  
 
Toxicity predictions were done using Protox2, in which we have 
considered only Class V and Class VI compounds. Class V and 
VI compounds have very less chances of toxicity which can be 

further useful in clinical trial studies. After applying all these 
filters, we get approximately 4000 compounds which were 
docked with each target molecule. Initial virtual screening using 
PyRx software generated nine different conformations for each 
ligand which are classified by binding affinity (kcal/mol). The 
top 10 ranked compounds for each target molecule were 
selected. Active sites of all the targets were predicted using 
active site predictor. Then they were site specifically docked 
with top 10 ranked compounds using AutoDock 4.2. In this 
docking grid was selected around the predicted active site.  
From the ten ligands, one best docked result for each target was 
selected and provided in Table 2 with their ligand structure, 
binding energy, ligand efficiency and number of hydrogen 
bonds. The binding orientation of all five complexes is shown in 
Figure 3.  

 
Table 2: Site –specific Molecular docking score of the five docked complexes 

Target Binding Energy 
(kcal/mol) 

Ligand efficiency 
(kcal/mol) 

Number of H Bonds 

Sporulation transcription factor (Spo0A) -9.59 -0.12 5 (Lys193, Lys256, Ala266, Thr255, Pro141) 
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Cyclic-di-GMP phosphodiesterase (PdcA) -10.36 -0.003 3 (Asn537, Thr571, Glu569) 
Histidinol-phosphate transaminase (HisC) -9.42  0.01 4 (Asn27, Phe108, Glu28, Gly29) 
3-deoxy-7-phosphoheptulonate synthase (DAHP synthase) -8.96 -0.08 4 (Arg186, Gly209, Ala212, Leu210) 

Bifunctional diguanylate cyclase/ phosphodiesterase (cyclic-diGMP) -8.17 -0.2 4 (Glu255, Phe248,Asn229, Lys251) 

 

 
Figure 3: Binding orientation of all five docked complexes. 
Macromolecule is shown in red color and ligand in green color. 
(A) Sporulation transcription factor (Spo0A) and ZINC13641164, 
(B) c-di-GMP phosphodiesterase (PdcA) and ZINC13691348, (C) 
histidinol-phosphate transaminase (HisC) and ZINC64969876, 
(D) 3-deoxy-7-phosphoheptulonate synthase (DAHP synthase) 
and ZINC5554596, (E) bifunctional diguanylate cyclase/ 
phosphodiesterase (cyclic-diGMP) and ZINC3894278. 
 
The best compounds that bind effectively with the target were 
further analysed for their stability and interaction using 
molecular dynamics (MD). To reduce error and artifacts, the 
experiment was carried out in triplicates for 50 ns that aid in 
obtaining substantial and reproducible MD results. All the 

protein ligand complexes were placed in cubic box neutralizing 
system. The system contains TIP3P water and is simulated for 50 
ns at constant 300K temperature and 1 bar pressure.  To evaluate 
the stability of the system, RMSD (root mean square deviation) 
and RMSF (root mean square fluctuation) were calculated using 
gmx_rms and gmx_rmsf commands. In Figure 4, RMSD graphs 
for backbone and alpha carbon shows that all trajectories reach 
equilibrium. It is one of the key parameters to investigate the 
insight into protein backbone and ligand stability during the MD 
simulation. The consistency of the protein-ligand complexes in 
dynamic states is explained by the consistent deviation or low 
variation of the RMSD value in Figure 4. 
 
To explore the insight protein backbone and ligand stability 
during the MD simulation, the protein backbone RMSD is one of 
the important parameters. As we run the dynamics in triplicates, 
the average RMSD for backbone and C alpha is almost the same. 
It was seen that the HisC backbone bound with ZINC64969876 
deviated slightly in the initial stage of simulation, and 
afterwards it achieved consistency around an RMSD of 4 nm till 
the end of the simulation. Although the lowest RMSD is found to 
be of Spo0A and ZINC13641164 which is around 1.5nm and it 
declines to 1nm around 35 to 45 ns. It might be due to more 
conformational changes of ZINC13641164 inside the Spo0A 
binding pocket.  Hence, from the above data and observations it 
was clear that all the protein ligand complexes achieved stability 
in the dynamic states.  
 
The ligand RMSD data against the time of simulation of 
ZINC13641164, ZINC13691348, ZINC64969876, ZINC5554596 
and ZINC3894278 was plotted and is given in Figure 5. Almost 
all ligands remained steady in dynamic states throughout the 
simulation, with a few exceptions. Ligand ZINC5554596 was 
seen to be steady till 40ns and suddenly the RMSD was 
increased from around 0.17 to 2.0 nm and further attained 
steadiness till the end of the simulation. This may be due to 
change in the molecule's conformational orientation. The 
differences between the maximum and average RMSD can 
provide insight into the overall molecular deviation from the 
mean position. The values are found to be 0.17, 0.09, 0.07, 0.028 
and 0.5 for ZINC13641164, ZINC13691348, ZINC64969876, 
ZINC5554596 and ZINC3894278, respectively. Based on the 
above low values and consistent variation of ligand RMSD 
suggested, the ligands are stable inside the active sites of the 
target. During MD run, all ligand remain bound to their 
respective targets throughout the simulation period. 
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Figure 4: RMSD plots for Molecular dynamics studies for all five protein ligand complexes. 
 

 
Figure 5: Ligand RMSD of ZINC13641164, ZINC13691348, ZINC64969876, ZINC5554596 and ZINC3894278. 
 

 
Figure 6: RMSF plots for Molecular dynamics studies done for all five protein ligand complexes. 
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Figure 7: Number of hydrogen bonds formed between protein and their respective ligands during simulation. 
 

 
Figure 8: Radius of Gyration, Solvent accessible surface area (SASA) and total energy plots for all the 5 complexes over 50 ns of 
simulation time. 
 
Table 3: Zone of inhibition (in mm) measured for all the four isolates at different concentrations of compounds. 

Compound Concentration Isolate 1 Isolate 2 Isolate 3 Isolate 4 

ZINC13641164 50 μg/ml 5.1±0.1 7.2±0.2 7.8±0.1 7.2±0.5 
100 μg/ml 7.0±0.1 9.2±0.4 9.5±0.3 9.3±0.2 
150 μg/ml 10.8±0.3 10.3±0.1 10.4±0.2 10.8±0.1 
200 μg/ml 13.3±0.3 13.6±0.2 13.8±0.1 13.5±0.4 
250 μg/ml 15.5±0.4 15.4±0.2 16.5±0.3 16.2±0.2 

ZINC13691348 50 μg/ml 4.5±0.5 5.2±0.2 4.6±0.1 5.5±0.2 
100 μg/ml 6.1±0.2 6.3±0.2 6.2±0.2 6.2±0.3 
150 μg/ml 8.4±0.2 8.0±0.1 8.0±0.4 8.4±0.2 
200 μg/ml 12.5±0.1 12.2±0.2 12.2±0.1 12.5±0.3 
250 μg/ml 15.3±0.2 15.3±0.1 14.8±0.4 14.6±0.2 

ZINC64969876 50 μg/ml 3.2±0.2 4.2±0.2 4.3±0.2 3.9±0.1 
100 μg/ml 6.5±0.1 6.1±0.3 5.8±0.1 5.4±0.1 
150 μg/ml 7.3±0.2 7.5±0.2 7.4±0.3 7.1±0.2 
200 μg/ml 8.8±0.2 8.3±0.1 8.8±0.4 8.2±0.1 
250 μg/ml 10.1±0.2 9.8±0.5 10.8±0.3 10.5±0.2 

ZINC5554596 50 μg/ml 5.2±0.2 5.0±0.3 6.6±0.2 4.8±0.1 
 100 μg/ml 7.2±0.3 7.5±0.2 7.2±0.3 7.5±0.2 
 150 μg/ml 10.5±0.2 10.7±0.1 10.1±0.5 10.7±0.3 
 200 μg/ml 13.5±0.5 11.6±0.3 11.9±0.2 7.8±0.2 
 250 μg/ml 15.2±0.4 13.2±0.2 14.2±0.5 15.0±0.1 
ZINC3894278 50 μg/ml 4.5±0.5 4.2±0.3 5.2±0.3 5.6±0.3 
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 100 μg/ml 6.1±0.2 6.4±0.1 6.2±0.1 7.5±0.5 
 150 μg/ml 8.3±0.2 9.2±0.0 7.8±0.6 8.9±0.2 
 200 μg/ml 9.5±0.1 10.8±0.1 9.2±0.4 9.7±0.2 
 250 μg/ml 11.3±0.1 13.5±0.2 11.5±0.5 12.5±0.3 

 
Table 4: List of compounds that were identified as inhibitors of C.difficile 

ZINC ID SMILES Mol  
wt 

Log 
P 

H-bond 
donors 

H-bond 
acceptors 

Apolar 
desolvation 

Polar 
desolvation 

ZINC13641164 Cc1onc(C(=O)NCCCn2cccn2) 
c1COc1ccc([N+](=O)[O-])cc1 

385.38 2.487 1 8 7.39 -16.41 

ZINC13691348 CN1CCN(C2=NC(=O)[C@@H] 
(C#N)C3(CCN(Cc4ccccc4)CC3) 
N2)CC1 

380.496 0.894 3 5 10.66 -92.24 

ZINC64969876 Cc1cccc(Cc2nc(CCNS(=O)(=O) 
c3c(C)noc3C)n[nH]2)c1 

375.454 1.83 2 6 5.79 -19.05 

ZINC5554596 CCCCCOc1cc(O)c2c(=O)cc(-c3ccccc3)oc2c1 324.376 4.735 1 4 8.78 -22.19 
ZINC3894278 O=c1ccc2cc(O[C@@H]3O 

[C@@H](CO)[C@@H](O) 
[C@@H](O)[C@@H]3O)c 
(O)cc2o1 

340.284 -1.323 5 9 -5.11 -15.51 

 
We have also plotted RMSF graph of individual amino acid 
residues to check the fluctuations in the amino acid residues of 
the active sites. In Figure 6 the RMSF for backbone and C- alpha 
shows that amino acids at active sites are not much fluctuating. 
However, a little fluctuation is seen at active site of Spo0A and 
cyclic-diGMP, this may be because more number of residues is 
participating in bringing about more fluctuation to the system. 
For Spo0A residues Thr255 and Lys256 and for cyclic-diGMP 
residues Asn229 and Phe248 are showing fluctuations. Except 
this fluctuation, the RMSF graphs suggest that the interactions of 
protein–ligand complexes were maintained during the MD run. 
 
The plots for number of hydrogen bonds formed during 
simulation are also plotted. Figure 7 shows the number of 
hydrogen bonds formed between each protein ligand complex. 
Average number of hydrogen bonds formed during simulation 
for Spo0A and ZINC13641164  is 6, for PdcA and ZINC13691348  
is 3, for HisC and ZINC64969876 is 5, for DAHP synthase and 
ZINC5554596  is 4 and for cyclic-diGMP and ZINC3894278 is 5.   
 
In addition, plots for radius of gyration (Rg), solvent accessible 
surface area (SASA) and total energy are also plotted for all five 
protein ligand complexes (Figure 8). Radius of gyration is 
defined as the root mean square distance between each atom in a 
structure and its centre of mass.  As seen from the plot, with the 
exception of PdcA, Rg is almost always decreasing, suggesting 
that ligand binding aids in stabilising and achieving 
compactness of the protein molecule. SASA is also considered as 
the important factor for determining protein folding and 
stability. It is measured as the surface area of protein that is 
accessible to solvent. SASA suggests the impact of ligand 
binding on the profile of amino acids at the protein surface. 
From the plot, it is clear that PdcA, HisC, cyclic-di GMP shows 
decreasing SASA which signifies that they undergo important 
structural changes upon binding of the ligand. The total energy 
plot for all the protein ligand complexes is same across the 
simulation suggesting the stability of the complexes.  
 
 

After in silico studies, in vitro compounds are tested on the four 
isolates using agar well diffusion assay and Minimum Inhibitory 
Concentration (MIC). The compounds were ordered from 
(www.mcule.com). All the five compounds show zone of 
inhibition with each of the four isolates, as shown in Table 3. 
The negative control taken as DW does not show any zone of 
inhibition. As seen from the table, the zone of inhibition 
increases with the increase in concentration of the compound. 
All compounds show comparable inhibition except 
ZINC64969876 which is showing less inhibition.  
 

 
Figure 9: Percentage inhibition of C. difficile at different 
concentrations of compounds. 
 
The minimum inhibitory concentrations of all the five 
compounds on each of the four isolates are measured. Their 
percentage inhibition is calculated and is shown in Figure 9. 
From the graph, it can be noted that compound ZINC13641164, 
ZINC13691348 and ZINC3894278 shows 50% inhibition at 25 
μg/ml, and compound ZINC5554596 shows 50% inhibition at 
12.5μg/ml. The compound ZINC64969876 shows 50% inhibition 
at highest concentration, 50μg/ml. Through in silico studies, we 
have concluded that five potent compounds namely, 
ZINC13641164, ZINC13691348, ZINC64969876, ZINC5554596 
and ZINC3894278 are capable of inhibiting C. difficile. On further 
in vitro studies, the compounds ZINC13641164, ZINC13691348, 
ZINC3894278 and ZINC5554596 are found to be most suitable. 
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All these compounds have been reported for the first time as 
antimicrobial agents and need further in vivo studies before 
being used as anti-clostridial drugs. Table 4 shows the list of 
compounds with their smiles that were identified as inhibitors of 
C. difficile. 
 
Conclusion:  
The rapid emergence of C. difficile virulent strains and 
development of antibiotic resistance in C. difficile creates a 
challenge to rapidly identify more drugs to treat this pathogen. 
In addition, high recurrence rate also makes this pathogen an 
attention seeker pathogen. As an urgent need, we have used 
structural biology approach to find the new lead molecules 
against C difficile. It is the cheapest, quickest and most reliable 
method to discover drugs against pathogen and has been used 
earlier for other pathogens. In our computer-aided drug design 
method, we have focused on the five key proteins that have been 
identified as C. difficile therapeutic targets.  For all the targets, we 
conclude the best lead compounds that can impair the functions 
of these proteins and affect the survival of the pathogen. The 
lead compounds are ZINC1364116 for Spo0A, ZINC13691348 for 
PdcA, ZINC64969876 for HisC, ZINC5554596 for DAHP 
synthase and ZINC3894278 for cyclic-diGMP. However, clinical 
trials are required to use these lead compounds as anti-
clostridial agents. 
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