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Abstract:  
Alzheimer's disease (AD) is the leading cause of dementia worldwide with therapeutic lacunae till date. The beta-amyloid (Aβ) 
accumulation triggers AD pathogenesis, though clinical trials lowering Aβ have not altered disease outcomes suggesting other 
interacting factors to be identified for drug design of AD. Therefore, it is of interest to identify potential hub proteins interlinked with 
disease-driving pathways using a network-based approach for AD therapeutic designing. Literature mining was done to identify 
proteins implicated in AD etiology. Protein-protein interactions (PPIs) were retrieved from the STRING database and merged into a 
single network using Cytoscape 3.10.1. The hub proteins involved in AD etiology were predicted based on the topological algorithms 
of CytoHubba. Six major proteins, with STRING database identifiers - APP, BACE1, PSEN1, MAPT, APOE4 and TREM2, were 
identified to be involved in AD pathogenesis. The merged network of PPIs of these proteins contained 51 nodes and 211 edges, as 
predicted by Analyzer module of Cytoscape. The Amyloid precursor protein (APP) emerged as the highest-scoring hub protein 
across multiple centrality measures and topological algorithms. Thus, current data provides evidence to support the ongoing 
investigation of APP’s multifaceted functions and therapeutic potential for AD.  
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Background: 

Alzheimer's disease (AD) is the leading cause of 
neurodegenerative disorders and is responsible for 60-70 percent 
of dementia cases worldwide. [1]. Recent evidence across 
systemic evaluations underscores the immensity of the AD crisis 
confronting global health and healthcare systems in the 21st 
century. Current models estimate nearly 75 million people 
worldwide suffered from some AD-related neurocognitive 
disability in 2023, with projections of 139 million cases by 2050 if 
therapeutic gaps continue [2]. Global AD data demands urgent 
attention toward developing generalizable and cost-effective 
medications for AD prevention and treatment. The drugs 
available for AD treatment, including cholinesterase inhibitors 
(Donepezil, Rivastigmine, Galantamine etc.) and antagonists of 
the N-methyl-D-aspartate receptor (Memantine), can only 
improve cognition for a limited period but cannot stop or 
reverse the disease progression [3]. While current medications 
provide modest and symptomatic relief for some Alzheimer's 
patients in the early to middle stages, they come with 
limitations. Cholinesterase inhibitors in particular can cause 
gastrointestinal side effects like nausea, vomiting, and diarrhea. 
Other side effects like headaches, insomnia, and dizziness may 
also occur [4]. Development of drugs to slow or stop the 
neurodegeneration and progression of Alzheimer's remains a 
key priority. Combination therapies targeting multiple aspects of 
disease or identifying the main protein, interlinked to all the 
disease-driving pathways, hold promise for the future.  
 
Multiple equivocal hypotheses (Amyloid cascade hypothesis, 
Tau hypothesis, mitochondrial dysfunction hypothesis and 
Neuroinflammation hypothesis) have been proposed to explain 
the underlying mechanisms of memory loss and cognitive 
decline in the pathogenesis of AD [4]. The amyloid cascade 
hypothesis proposes that the accumulation of beta-amyloid (Aβ) 
peptides due to impaired clearance triggers a cascade leading to 
AD pathology and symptoms. Aβ peptides result from the 

proteolytic cleavage of the amyloid precursor protein (APP) by 
various secretases and the peptide Aβ42 is more prone to 
aggregation into plaques [5, 6]. However, the hypothesis has 
limitations; clinical trials targeting Aβ have not successfully 
treated AD, suggesting other factors are likely involved [7]. The 
tau hypothesis postulates that the buildup of abnormal tau 
proteins in the brain is the primary causal factor in the 
development of AD, rather than Aβ [8]. The elevated number of 
neurofibrillary tangles (NFTs) is even detected in some pre-
amyloid cases of early Alzheimer's, termed primary aging-
related tauopathy [9]. This suggests tau pathology can precede 
Aβ. However, tau protein accumulation also occurs in other 
neurodegenerative diseases [10]. Therefore, tau pathology alone 
is not specific to AD, and underlying mechanisms may differ 
across diseases. Mitochondrial dysfunction has been linked to 
the accumulation of Alzheimer's hallmarks like Aβ plaques and 
NFTs [11]. However, it remains unclear whether mitochondrial 
dysfunction is a cause or a consequence of AD pathogenesis [12]. 
Preclinical studies in mouse and rat models indicate AD 
progression can be slowed by targeting mitochondria and 
restoring function through antioxidants [13]. Targeting 
mitochondria and oxidative stress shows promise for slowing 
AD, but the intricacies are not yet fully characterized. 
Neuroinflammation is known to play a significant role in AD 
pathogenesis [14]. Brains affected by AD exhibit heightened 
levels of inflammatory markers such as cytokines, pointing to 
the existence of persistent minor brain inflammation [15]. Some 
research indicates that inflammation starts early and adds to the 
progression of pathological changes, while other studies propose 
that inflammation is a subsequent immunological reaction to 
nerve cell damage that has already occurred [16]. Anti-
inflammatory drugs like non-steroidal anti-inflammatory drugs 
(NSAIDs) and statins have been tested for AD treatment with 
mixed results [17]. This suggests inflammation is likely not the 
sole driver of AD. More research is needed to unravel the timing 
and interrelation between the hypotheses related to AD 
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pathology. Therefore, it is if interest to identify the hub 
protein(s) responsible for AD pathogenesis, using literature 
mining and network-based approaches. 
 
Materials and Methodology:  
Literature mining: 
The KEGG pathway database [18] was mined for the 
identification of the main protein targets responsible for the 
pathological state of AD (map: hsa05010). The proteins identified 
to be involved in different mechanisms of AD progression were 
selected for further studies of their interrelated interactions.  
 
Protein-protein interactions: 

The protein-protein interaction (PPI) networks of the identified 
proteins, involved in AD etiology, were retrieved using the 
STRING database. The STRING database is based on known 
interactions retrieved from experimental and curated databases; 
predicted interactions derived using gene fusions, 
neighbourhood and co-occurrence criteria, and other interactions 
retrieved from text mining, protein homology and co-expression 
[19]. The retrieved PPI networks of all the proteins were 
analysed for the number of nodes (representing query proteins), 
number of edges (representing protein-protein associations), 
average node degree, expected number of edges, average local 
clustering coefficient and PPI enrichment p-value, using 
Analysis module of STRING database.  
 
Network generation and analysis: 
The PPI networks of the identified proteins, involved in AD 
pathology and as retrieved from the STRING database, were 

merged into a single PPI network map at a confidence score of 
0.40, using Cytoscape 3.10.1 [20]. The Analyzer tool of Cytoscape 
3.10.1 was used to analyse the merged network. The Analyzer 
predicted the summary of the merged network and provided 
statistics of the number of edges, nodes, average number of 
neighbours, clustering coefficient, network heterogeneity, 
network centralisation, characteristics path length etc. The single 
merged network was used for further studies of hub protein 
identification.  
 
Hub-protein identification: 

The single merged network generated by merging the PPI 
networks of the identified proteins was studied for its topology 
using local and global algorithms of the CytoHubba module [21]. 
The 4 local rank methods of the CytoHubba i.e. Degree, Maximal 
clique centrality (MCC), Maximum neighborhood component 
(MNC), and Density of maximum neighborhood component 
(DMNC) only consider the relationship between the node and its 
direct neighbors, therefore the global rank methods involving 
Edge percolated component (EPC) and 6 centralities i.e. 
Bottleneck, EcCentricity, Closeness, Radiality, Betweenness and 
Stress which examine the relationship between the node and the 
entire network, were also used for the hub-protein identification. 
The merged network was selected as the target network and the 
nodes’ score was calculated for the top 10 nodes of Hubba. The 
nodes’ score was analyzed for all the topological algorithms of 
CytoHubba, and hub protein was identified based on the 
average scoring of all the algorithms. 

 
Figure 1: Protein-protein interactions of the identified proteins a) APP; b) BACE1; c) PSEN1; d) MAPT; e) APOE4; f) TREM2 (Colored 
nodes represent query proteins and first shell of interactions, edges represent various known and predicted interactions determined 
using gene neighborhood, gene fusions and gene co-occurrence). 
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Figure 2: Top 10 hub proteins identified using a) MCC; b) MNC; c) DMNC; e) Degree; f) EPC; g) Bottleneck; h) Stress; i) Betweenness; 
j) Radiality; k) Closeness; l) Eccentricity topological algorithms (The node scores are varying from red to orange and yellow colors, 
red colored node being the highest scoring node and yellow colored node being the lowest scoring node) 
 
Table 1: Protein-protein interaction network parameters for the selected proteins 

Network parameters Score for APP Score for BACE1 Score for PSEN1 Score for MAPT Score for APOE4 Score for TREM2 

Number of nodes 11 11 11 11 11 11 
Number of edges 33 32 40 33 52 36 
Average node degree 6 5.82 7.27 6 9.45 6.55 
Avg. local clustering coefficient 0.857 0.871 0.855 0.841 0.952 0.826 
Expected number of edges 12 11 15 16 13 12 
PPI enrichment p-value 5.37e-07 2.15e-07 3.59e-08 0.000124 2.22e-16 2.11e-08 

 
Table 2: CytoHubba nodes’ score of the top 10 nodes obtained from global topological algorithms 

Ranks 
EPC 
protein 

EPC 
score 

Bottleneck 
protein 

Bottleneck 
score 

Stress 
protein 

Stress 
score 

Betweenness 
protein 

Betweenness 
score 

Radility 
protein 

Radiality 
score 

Closeness 
protein 

Closeness 
score 

Eccentricity 
protein 

Eccentricity 
score 

1 APP 20.27 APP 43 APOE 3552 APP 1066.2 APP 3.74 APP 42.6 APOE 0.5 
2 APOE 19.3 APOE 10 APP 2910 APOE 633.66 APOE 3.56 APOE 36.5 APOA1 0.33 
3 CLU 17.6 BACE1 8 CLU 1622 CLU 226.26 CLU 3.38 PSEN1 32.8 LRP1 0.33 
4 PSEN1 17.07 PSEN1 6 TYROBP 1288 BACE1 197.26 PSEN1 3.32 CLU 32.6 APOB 0.33 
5 NCSTN 15.8 CLU 5 TREM2 1288 PSEN1 169.39 BACE1 3.26 BACE1 31.3 CLU 0.33 
6 BACE1 15.5 TREM2 5 PSEN1 1032 TYROBP 143.5 NCSTN 3.24 NCSTN 30.8 LRP8 0.33 
7 APOA2 15.3 MAPT 5 BACE1 870 TREM2 143.5 GSK3B 3.2 GSK3B 29.5 TREM1 0.33 
8 APOB 15.24 APBB1 3 CD33 766 MAPT 134.9 MAPT 3.18 MAPT 29 APOA2 0.33 
9 APOC2 15.07 TYROBP 2 TREM1 634 CD33 75.14 APOA1 3.12 APOA 28.5 APOC1 0.33 
10 APOA1 14.8 GSK3B 2 MAPT 458 TREM1 72.23 APOB 3.12 APOB 28.5 TYROBP 0.33 

 
Table 3: CytoHubba nodes’ score of the top 10 nodes obtained from local topological algorithms 

Ranks MCC protein MCC score MNC protein MNC score DMNC protein DMNC score Degree protein Degree score 

1 APP 127444 APP 37 APOA1 0.83 APP 37 
2 APOE 121974 APOE 23 APOB 0.83 APOE 23 
3 CLU 121104 PSEN1 18 APOA2 0.83 PSEN1 18 
4 APOA1 120960 CLU 16 APOC2 0.83 CLU 16 
5 APOB 120960 NCSTN 14 APOC3 0.83 BACE1 15 
6 APOA2 120960 BACE1 14 LRP1 0.81 NCSTN 14 
7 APOC2 120960 GSK3B 11 LRP8 0.81 GSK3B 11 
8 APOC3 120960 APOA1 10 APOC1 0.81 APOA1 10 
9 LRP1 40320 APOB 10 APH1A 0.76 APOB 10 
10 LRP8 40320 APOA2 10 PSENEN 0.76 APOA2 10 
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Results and Discussion: 
Literature mining: 
A total of 6 proteins with STRING database identifiers - APP, 
BACE1, PSEN1, MAPT, APOE4, and TREM2, were identified to 
be involved in different hypothetical mechanisms of AD 
progression using the KEGG pathway database. APP (amyloid-
precursor protein) is the initial protein of amyloid-cascade 
hypothesis and its processing in the amyloidogenic pathway is 
mediated by BACE1 (β-secretase) and PSEN1 (Presenilin-1). 
Furthermore, BACE1 and PSEN1 were found to be associated 
with the neuroinflammatory [22] and Tau [23] hypotheses, 
respectively. MAPT (Microtubule-associated protein tau) is 
responsible for the tau hypothesis and formation of NFTs. 
APOE4 (Apolipoprotein E4) is found to be involved in various 
mechanisms like neuroinflammation, tau pathology and 
decreased Aβ clearance [24]. TREM2 (Triggering receptor 
expressed on myeloid cells 2) is a microglial transmembrane 
receptor associated with the neuroinflammatory hypothesis of 
AD [25].  
 
Protein-protein interactions: 
The STRING database provided functional and binary 
associations for each protein identified using literature mining of 
the KEGG database (APP, BACE1, PSEN1, MAPT, APOE4, and 
TREM2), in the form of PPI networks. The PPIs were analysed 
for the known and predicted interactions and the PPIs above an 
average clustering coefficient of 0.8 were selected for further 
studies of hub-protein identification (Figure 1). An average of 11 
nodes (proteins involved in the network) were obtained for each 
PPI network and the number of edges (associations determined 
from databases, gene neighbourhood, gene fusions, gene co-
occurrence, co-expression, and protein homology) varied from 
32 to 52, more than the expected number of edges (Table 1). The 
average node degree was found to vary from 5.82 to 9.45 and the 
PPI enrichment p-value was observed to be very small for each 
network suggesting functional relation of the proteins involved 
in a network. APP was observed to have maximum associations 
with NCSTN (Nicastrin), BACE1 and PSEN1, hence directing 
towards the amyloidogenic processing as the main pathway 
(Figure 1a). Similarly, the PPI network of BACE1 was also 
observed for maximum interactions with APP (Figure 1b). The 
PPI network of PSEN1 showed maximum interactions of PSEN1 
with PSEN2 and PSENEN, pointing towards Notch and Wnt 
signaling cascades (Figure 1c). The PPI network of MAPT 
showed maximum interactions of MAPT with CDK5 and tubulin 
subunits, targeting neuronal health and microtubule associations 
(Figure 1d). APOE had maximum associations with APP, LRP1 
and APOB mainly targeting APP processing and endocytosis 
(Figure 1e). TREM2 had maximum associations with TYROBP, 
TREML1 and TREML2 which are involved in tyrosine kinase 
signalling mediating cell activation and immunological 
processing (Figure 1f). 
 
Network generation and analysis: 
The PPIs determined from the STRING database were merged 
into a single network using Cytoscape 3.10.1 and analyzed using 

the Analyzer of Cytoscape 3.10.1. The merged network was 
obtained with 51 nodes, 211 edges, an 8.275 average number of 
neighbours, a characteristic path length of 2.228 and a clustering 
coefficient of 0.797.  The merged network was further used for 
CytoHubba nodes’ score calculation and top 10 nodes were 
predicted using local (Table 2) and global topological algorithms 
(Table 3). Firstly, scores from all 11 methods (MCC, MNC, 
DMNC, Degree, EPC, Bottleneck, EcCentricity, Closeness, 
Radiality, Betweenness and Stress) were generated and the top-
ranked nodes of each method were predicted in a graphical form 
(Figure 2a-k). Methods like EPC (Figure 2a), Stress (Figure 2c), 
Betweenness (Figure 2d), Radiality (Figure 2e) and MCC (Figure 
2h) assigned higher scores to highly interactive, high-degree 
proteins and lower scores to low-degree proteins with few 
interactions. Similar outputs were observed for these 5 
algorithms as APP, APOE and CLU were observed to be in the 
top 3 nodes having the highest scores as the most essential 
proteins. However, methods like Eccentricity (Figure 2g) and 
DMNC (Figure 2j) identified low-degree essential proteins, and 
similar association scores of nodes were obtained from both the 
methods. 
 
Hub-protein identification: 
Three of the local topological algorithms (MCC, MNC and 
Degree) predicted APP as the top-scoring node, whereas DMNC 
provided APOA1 as the top-scoring node. Similarly, the global 
topological algorithm EPC and four out of six centralities 
(Betweenness, Radiality, Closeness and Bottleneck) predicted 
APP as the top-scoring node, Stress predicted APP as the 
second-highest scoring node, whereas EcCentricity predicted 
APOE as the top-scoring node and all other nodes were having 
the same score. Based on the average scores of all the topological 
algorithms, APP was predicted as the hub-protein (Table 2 and 
3, Figure 2). The present network findings reinforce APP's 
extensive connectivity to known AD risk proteins, supporting 
ongoing research into its multifaceted functions and 
contributions to neurodegeneration.  
 
Conclusion: 

We used literature mining and network-based approach to 
identify amyloid precursor protein (APP) as a potential hub 
protein and a key contributor to AD pathogenesis. Of the 
proteins analyzed, APP emerged as having the most interactions 
and a central role within the merged protein-protein interaction 
network. Data shows APP’s extensive connectivity to known AD 
risk proteins, supporting ongoing investigation into its 
multifaceted functions and contributions to neurodegeneration. 
Data further provide a good platform but require careful 
interpretations, during translation studies for AD therapeutics, 
given the complexity of AD etiology and should integrate multi-
omics data sources to elucidate the interrelations between 
protein pathways underlying the amyloid, tau, mitochondrial 
dysfunction, and neuroinflammation hypotheses implicated in 
disease progression. 
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