©Biomedical Informatics (2024)

DOI: 10.6026/973206300200261

BIOINFORMATION Impact Factor (2023 release) is 1.9 with 2,198 citations from 2020 to 2022 across continents taken for IF calculations.

Declaration on Publication Ethics:

The author's state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

Declaration on official E-mail:

The corresponding author declares that lifetime official e-mail from their institution is not available for all authors

License statement:

This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Comments from readers:

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article without open access charges. Comments should be concise, coherent and critical in less than 1000 words.

Disclaimer:

The views and opinions expressed are those of the author(s) and do not reflect the views or opinions of Bioinformation and (or) its publisher Biomedical Informatics. Biomedical Informatics remains neutral and allows authors to specify their address and affiliation details including territory where required. Bioinformation provides a platform for scholarly communication of data and information to create knowledge in the Biological/Biomedical domain.

> Edited by Peter N Pushparaj Citation: Sifeddine *et al.* Bioinformation 20(3): 261-270 (2024)

Insights from the SNP analysis of TYMP gene linking MNGIE

Najat Sifeddine^{1,2*}, Lamiae Elkhattabi¹, Chaimaa Ait El Cadi¹, Al Mehdi Krami¹, Khadija Mounaji², Bouchra el khalfi² & Abdelhamid Barakat^{*, 1}

¹Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco; ²Laboratory of Physiology and Molecular Genetics, Department of Biology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco; *Corresponding author

Affiliation URL:

http://www.pasteur.ma/ https://fsac.univh2c.ma/

Bioinformation 20(3): 261-270 (2024)

Department E-Mail:

E-mail: hamid.barakat@pasteur.ma

Author contacts:

Najat Sifeddine - E-mail: sifeddinenajat30@gmail.com Lamiae Elkhattabi -E-mail: lamiaeelkhattabi@gmail.com Chaimaa Ait El Cadi - E-mail: chaimaa.aitelcadi-etu@etu.univh2c.ma Al Mehdi Krami - E-mail: almehdi.krami@etu.univh2c.ma Khadija Mounaji - E-mail: khadija.mounaji8@gmail.com Bouchra el khalfi - E-mail: bouchra.elkhalfi@gmail.com

Abstract:

TYMP gene, which codes for thymidine phosphorylase (TP) is also known as platelet-derived endothelial cell growth factor (PD-ECGF). TP plays crucial roles in nucleotide metabolism and angiogenesis. Mutations in the TYMP gene can lead to Mitochondrial Neurogastrointestinal Encephalopathy (MNGIE) syndrome, a rare genetic disorder. Our main objective was to evaluate the impact of detrimental non-synonymous single nucleotide polymorphisms (nsSNPs) on TP protein structure and predict harmful variants in untranslated regions (UTR). We employed a combination of predictive algorithms to identify nsSNPs with potential deleterious effects, followed by molecular modeling analysis to understand their effects on protein structure and function. Using 13 algorithms, we identified 119 potentially deleterious nsSNPs, with 82 located in highly conserved regions. Of these, 53 nsSNPs were functional and exposed, while 79 nsSNPs reduced TP protein stability. Further analysis of 18 nsSNPs through 3D protein structure analysis revealed alterations in amino acid interactions, indicating their potential impact on protein function. This will help in the development of faster and more efficient genetic tests for detecting TYMP gene mutations.

Keywords: prediction; Mitochondrial Neurogastrointestinal Encephalopathy; Thymidine phosphorylase; nsSNPs; UTR; conservation; stability; molecular Modeling

Background:

The TYMP gene, responsible for producing thymidine phosphorylase (TP), is situated on chromosome 22q13.33 [1]. The TP, also known as platelet-derived endothelial cell growth factor, is an enzyme that plays a crucial role in catalyzing the reversible phosphorolysis of thymidine, deoxyuridine, and their analogs (excluding deoxycytidine). This enzymatic activity leads to the formation of the corresponding bases and 2-deoxy-Dribose-1-phosphate (2-dR-1-P) [2]. In the human body, the expression of TP, also known as hTP, is noteworthy in several tissues, including macrophage-like cells, the placenta, lymph nodes, spleen, liver, lungs, and peripheral lymphocytes [3]. The TYMP is found to be overexpressed in various cancer types, encompassing head and neck [4], breast [5], lung [6], oral squamous carcinoma [7], esophageal [8], gastric [9], colorectal [10], bladder [11], prostate [12], ovarian [13], and cervical [14] cancers, among several others. Its biological effects in cancer are primarily characterized by strong pro-angiogenic [15] properties and anti-apoptotic activity [16]. Mutations within the TP gene are an uncommon source of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) [17]. Patients diagnosed with MNGIE display a marked reduction in TP activity, accompanied by a pronounced increase in the levels of thymidine and deoxyuridine in both the blood and tissues. This elevated presence of these substances has detrimental effects, causing disruption of mitochondrial DNA [1]. MNGIE presents a clinical profile characterized by a spectrum of symptoms, encompassing ptosis, ophthalmoparesis, gastrointestinal dysmotility, cachexia, peripheral neuropathy, myopathy, leukoencephalopathy, and lactic acidosis. Typically, the onset of MNGIE disease manifests

before the age of 30 and sadly leads to the premature mortality of affected individuals between the ages of 20 and 40 [18]. This condition is intricately associated with the depletion and deletion of mitochondrial DNA (mtDNA), resulting from mitochondrial nucleoside/nucleotide abnormalities in metabolism [19]. Nonsynonymous SNPs (nsSNPs) located in coding regions can induce alterations in protein structure and/or function. Furthermore, in untranslated regions (UTRs), they frequently correlate with a range of diseases [20]. Identification of deleterious nsSNPs for most Human genes remains a major challenge in medical genetics. Therefore, it is of interest to identify deleterious SNPs that may affect the TP protein structure and/or function. In silico analyses conducted in this study not only advance our understanding of the impact of deleterious SNPs on TP protein structure and function but also lay a solid foundation for future experimental validations.

Materials and Methods:

Collection of nsSNPs:

Information regarding single nucleotide polymorphisms (SNPs) within the human TP gene was sourced from Ensembl (ensembl.org/), while the FASTA amino acid sequence of the TP protein (P19971) was retrieved from the UniProt database [21].

Prediction of protein alterations:

The pathogenicity of each non-synonymous SNP (nsSNP) collected was predicted using PredictSNP **[22]**, a resource consolidating predictions from various tools including SIFT (Sorting Intolerant from Tolerant) **[23]**, PolyPhen-2 (Polymorphism Phenotyping v2) **[24]**, PhD-SNP **[25]**, PANTHER

[26], and SNAP [27]. SIFT employs sequence homology to predict the impact of coding mutations on protein function, while PolyPhen-2 assesses the influence of substitutions on protein structure and function based on physical properties. PhD-SNP utilizes support vector machine (SVM) methods to classify mutations as disease-causing or benign. PANTHER predicts pathogenicity based on evolutionary patterns. MAPP [24] predictions were based on physicochemical variation in sequence alignments.

Sequence conservation:

ConSurf **[28]**, a web-based algorithm, was employed to predict functionally important regions of the protein by estimating the degree of conservation of amino acid sites based on homology. The given score is between 1 and 9, representing the level of conservation of each amino acid. A score of 9 represents a highly conserved region, a score of 1 represents a highly variable region, and a score of 5 represents the average. This tool also reveals the type of residue in the giving position of the protein, which can be functional or structural and buried or exposed.

Prediction of nsSNPs positions in different protein domains:

The InterPro tool **[29]** facilitates the prediction of domains and important sites of proteins based on functional analysis and classification into families. In this study, the InterPro tool was utilized to identify the positions of nsSNPs within different protein domains.

System preparation and structural analysis:

The X-ray crystal structure of the human TP protein bound with thymine was retrieved from the Protein Data Bank (PDB) with a resolution of 2.31 Å (PDB ID 2j0f) **[30]**. Mutant protein structures were generated by substituting amino acids at corresponding positions, followed by energy minimization using the SPDB viewer tool **[31]** based on the GROMOS 96 force field.

Prediction of the effect of nsSNPs located in the UTR region:

The 5' and 3' untranslated regions (UTRs) play crucial roles in post-transcriptional gene regulation, translation efficiency, mRNA subcellular localization, and stability. UTRScan **[32]** was employed to predict functional SNPs within these regions. This tool searches submitted sequences for motifs present in UTRsite, which derives data from UTRdb, a curated database updated through primary data mining and experimental validation.

Results:

SNP datasets:

A total of 513 non-synonymous SNPs (nsSNPs) were retrieved from the thymidine phosphorylase (TP) gene data available in Ensembl. Among these, 124 SNPs were identified in the 5' untranslated region (UTR), and 23 were located in the 3' UTR of the human TP gene.

Prediction of deleterious nsSNPs:

Out of 513 nsSNPs, 119 were predicted as deleterious by all integrated tools in PredictSNP and was selected for further analysis (Table 1).Conservation analysis using the Consurf web server revealed that out of 119 nsSNPs analyzed, 82 were located in highly conserved positions. Of these, 53 were identified as functional and exposed residues, while 29 were predicted to be buried. We selected only residues with a high degree of conservation (**Figure 1**).

Prediction of different domains in TP:

The InterPro tool identified three domains within the TP protein: Glycosyl-Transferase-N-Domain (38-99), Glycosyl-Transferase-Fam3 (110-340), and PYNP-C (388-462). The distribution of highly conserved nsSNPs within these domains is illustrated in **Figure 1**.

Impact of predicted deleterious mutations on tp stability:

Using I-Mutant 20, DUET, and MUpro web servers, it was found that 79 nsSNPs led to a decrease in the stability of TP. **Table 2** summarizes these results.

Structural analysis:

18 deleterious nsSNPs were selected for investigation. These chosen nsSNPs encompassed three variants located within residues crucial for thymine binding (R202K, R202T, and T118R), eight situated proximally to the active site (G120R, G120S, V121G, G122D, G122S, D123G, V208G, and V241D), two positioned within the loop involved in the closed conformation and stabilization of the dimer interface (G407R and R408S), and eight nsSNPs identified within the phosphate-binding site (S144R, G145R, R146H, R146S, and G153S). The substitution of arginine with threonine at position T118 resulted in the formation of a covalent bond with the thymine ligand and alterations in hydrophobic and hydrogen interactions compared to the native TP form. Mutations R202K and R202T led to the loss of hydrogen bonds with the thymine ligand and significant variations in hydrophobic interactions compared to the native form. The replacement of valine with guanine at conserved position 208 disrupted the hydrophobic interaction network compared to native TP. The V241D variant displayed destabilization in the hydrophobic domains, characterized by the acquisition of hydrophobic bonds with thymine and the loss of an interaction with IL241 compared to native TP. Additionally, the eight nsSNPs (S144R, G145R, R146H, R146S, L148P, L148V, G152R, and G153S) located in the phosphatebinding site, a highly conserved region, induced changes in both hydrophobic and hydrogen interactions.

Prediction of deleterious nsSNPs in UTRs:

Using the UTRscan server, 32 SNPs were predicted to be functional in the internal ribosome entry site (IRES) within the 5' UTR of the TP gene. These functional SNPs are listed in **Table 3**.

©Biomedical Informatics (2024)

Figure 1: Location of different mutations in the human TYMP protein. Mutations that are structurally analyzed are subdivided into four groups: red =deleterious mutations in the glycine- rich loop; green=deleterious mutations in the active site loop; blue = deleterious mutations in the loop involved in stabilization of the dimmer interface; black square = exposed residues; buried residues = red triangle.

Figure 2: Residues contribute to the active site integrity and stability of the closed form. A:R408 (wild type-TYMP), B: S408 (variant type), C: G407 (wild type-TYMP), and D: R407 (variant type). Residues substituted are shown in blue.

©Biomedical Informatics (2024)

Table 1: Software prediction and scores for the 119 deleterious nsSNP of the TYMP gene

	PredictSNP	MAPP	PhD-SNP	PolyPhen-1	PolyPhen-2	SIFT	SNAP	PANTHER
14034	prediction							
140M K43T	DELETERIOUS							
L49R	DELETERIOUS							
L49Q	DELETERIOUS							
Q70H	DELETERIOUS							
M74K	DELETERIOUS							
L75R	DELETERIOUS							
M76I	DELETERIOUS							
G82K F87D	DELETERIOUS							
E87Q	DELETERIOUS							
T92N	DELETERIOUS							
S98W	DELETERIOUS							
598L D114N	DELETERIOUS							
K115R	DELETERIOUS							
T118R	DELETERIOUS							
G119V	DELETERIOUS							
G119R	DELETERIOUS							
G1205 G120R	DELETERIOUS							
V121G	DELETERIOUS							
V121M	DELETERIOUS							
G122S	DELETERIOUS							
G122D	DELETERIOUS							
D123G S126R	DELETERIOUS							
A130P	DELETERIOUS							
P131T	DELETERIOUS							
L133P	DELETERIOUS							
A134V	DELETERIOUS							
3134E	DELETERIOUS							
V140M	DELETERIOUS							
M142V	DELETERIOUS							
M142T	DELETERIOUS							
5144R	DELETERIOUS							
3145K 2146S	DELETERIOUS							
R146H	DELETERIOUS							
L148V	DELETERIOUS							
L148P	DELETERIOUS							
G152R	DELETERIOUS							
G1555 D156C	DELETERIOUS							
E159V	DELETERIOUS							
E159K	DELETERIOUS							
S160P	DELETERIOUS							
C181D	DELETERIOUS							
G186D	DELETERIOUS							
Q187K	DELETERIOUS							
S188R	DELETERIOUS							
S188C	DELETERIOUS							
P1935	DELETERIOUS							
P193L	DELETERIOUS							
A194T	DELETERIOUS							
A194V	DELETERIOUS							
Y199H	DELETERIOUS							
R202K	DELETERIOUS							
R202T	DELETERIOUS							
D203H	DELETERIOUS							
D203N	DELETERIOUS							
12051 V208C	DELETERIOUS							
V208M	DELETERIOUS							
5210R	DELETERIOUS							
K222R	DELETERIOUS							
3226A	DELETERIOUS							
235IN	DELETERIOUS							
/241D	DELETERIOUS							
.251V	DELETERIOUS							
.251P	DELETERIOUS							
.255P /256G	DELETERIOUS							
/256D	DELETERIOUS							
G263E	DELETERIOUS							
G263R	DELETERIOUS							
A268E	DELETERIOUS							
270P	DELETERIOUS							
M273I	DELETERIOUS							
M273T	DELETERIOUS							
276L	DELETERIOUS							
276T	DELETERIOUS							
32825	DELETERIOUS							
G282D	DELETERIOUS							
L285P	DELETERIOUS							
E286G	DELETERIOUS							
E286K	DELETERIOUS							
E289A	DELETERIOUS							
C293R	DELETERIOUS							

Bioinformation 20(3): 261-270 (2024)

©Biomedical Informatics (2024)

| G296R | DELETERIOUS |
|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| L302S | DELETERIOUS |
| G310R | DELETERIOUS |
| L313P | DELETERIOUS |
| A333E | DELETERIOUS |
| L334R | DELETERIOUS |
| F343C | DELETERIOUS |
| Q350E | DELETERIOUS |
| G387D | DELETERIOUS |
| A398P | DELETERIOUS |
| L404F | DELETERIOUS |
| L404P | DELETERIOUS |
| G405R | DELETERIOUS |
| G407R | DELETERIOUS |
| V419L | DELETERIOUS |
| V419M | DELETERIOUS |
| R408S | DELETERIOUS |
| G428S | DELETERIOUS |
| G428D | DELETERIOUS |
| G434W | DELETERIOUS |
| L459P | DELETERIOUS |

Table 2: Prediction of change in protein stability using I-Mutant2.0, MUpro and DUET

SNPID	substitution	Mupro		I-mutant	DUET	
			DDG			DDG
rs935752285	I40M	decrease	-0.94	decrease	decrease	-0.995
rs752137335	K43T	decrease	-1.52	decrease	decrease	-1.645
rs772046185	Q70H	decrease	-0.98	decrease	decrease	-0.777
rs1190033207	Q70L	increase	0.076	increase	increase	0.816
rs1064792859	M76I	increase	0.166	decrease	decrease	-0.233
rs749827433	E87D	increase	0.16	decrease	decrease	-1.726
rs1361630544	E87Q	decrease	-0.58	decrease	decrease	-1.11
rs891107196	T92N	decrease	-0.62	increase	decrease	-1,37
rs758303113	S98L	increase	0,38	increase	decrease	-0.13
rs758303113	S98W	decrease	-0.3	increase	decrease	-1.35
rs1064792861	D114N	decrease	-1.25	decrease	decrease	-1.403
rs775841111	K115R	decrease	-0.87	decrease	decrease	-1.326
rs767829510	T118R	decrease	-0.943	decrease	decrease	-0.779
rs786205559	G119R	decrease	-1.37	decrease	decrease	-0.482
rs866018044	G119V	decrease	-1.36	decrease	decrease	-0.498
rs863224250	G120R	decrease	-0.92	decrease	decrease	-0.539
rs863224250	G120S	decrease	-0.92	decrease	decrease	-0.894
rs948237404	V121G	decrease	-1.65	decrease	decrease	-2.107
rs1159212438	V121M	decrease	-0.46	decrease	decrease	-0.998
rs1388735279	G122D	decrease	-0.16	decrease	decrease	-2.386
rs997046759	G122S	decrease	-0.61	decrease	decrease	-1.876
rs1452194925	D123G	decrease	-1.44	decrease	decrease	-0.682
rs749738967	S126R	decrease	-0.22	increase	decrease	-0.53
rs863224255	P131T	decrease	-0.85	decrease	decrease	-2.074
rs199901350	A134E	decrease	-0.352	decrease	decrease	-3.3385
rs199901350	A134V	decrease	-0.12	increase	decrease	-0.512
rs1207543220	V140M	decrease	-0.41	decrease	decrease	-1.688

SNP ID	substitution	Mupro		I-mutant	DUET	
			DDG			DDG
rs751803871	S144R	decrease	-0.74	decrease	decrease	-0.763
rs121913037	G145R	decrease	-0.64	decrease	decrease	-0.897
rs188802138	R146H	decrease	-1.25	decrease	decrease	-1.313
rs1357734207	R146S	decrease	-1.14	increase	decrease	-1.239
rs1223312855	L148P	decrease	-1.75	decrease	decrease	-1.548
rs1022322270	L148V	decrease	-1.05	decrease	decrease	-0.543
rs765604179	G152R	decrease	-0.00	decrease	decrease	-0.058
rs121913038	G153S	decrease	-1.29	decrease	decrease	-1.31
rs1064792863	D156G	decrease	-1.13	decrease	decrease	-0.777
rs777005301	E159K	decrease	-0.81	decrease	decrease	-0.311
rs863224251	E159V	decrease	-0.02	increase	decrease	-0.21
rs865961520	P193L	decrease	-0.06	decrease	decrease	-0.001
rs1236277429	P193S	decrease	-0.62	decrease	decrease	-1.627
rs923009362	A194T	decrease	-1.568	decrease	decrease	-1.727
rs1361750261	Y199C	increase	0.019	increase	decrease	-1.29
rs1434418446	Y199H	decrease	-0.4	decrease	decrease	-1.089
rs121913041	R202K	decrease	-1.57	decrease	decrease	-1.78
rs121913041	R202T	decrease	-1.54	decrease	decrease	-2.36
rs765932857	D203H	decrease	-1.01	decrease	decrease	-0.656
rs765932857	D203N	decrease	-0.71	decrease	decrease	-0.49
rs929350708	T205I	decrease	-0.5	decrease	decrease	0.96
rs1064792867	V208G	decrease	-4.1	decrease	decrease	-2.369

Bioinformation 20(3): 261-270 (2024)

rs121913039	V208M	decrease	-0.7	decrease	decrease	-0.876
rs149977726	K222R	decrease	-0.76	decrease	decrease	-2.03
rs780762083	V231A	decrease	-3.5	decrease	decrease	-2.483
rs1372616333	K235N	decrease	-1.02	increase	decrease	-1.17
rs568773673	A240D	decrease	-0.7	decrease	decrease	-0.703
rs758373793	V241D	decrease	-0.86	decrease	decrease	-0.681

SNP ID	substitution	Mupro		I-mutant	DUET	
			DDG			DDG
rs1487581282	L251P	decrease	-1.91	decrease	decrease	-2.028
rs1487581282	L251V	decrease	-1.07	decrease	decrease	-1.812
rs1199784789	G263E	decrease	-0.42	increase	decrease	-0.302
rs9628204	G263R	decrease	-0.46	decrease	decrease	-0.514
rs369432373	A268E	decrease	-0.61	decrease	decrease	-2.41
rs369432373	A268G	decrease	-1.39	decrease	decrease	-1.638
rs1190901146	M273I	decrease	-1.18	decrease	decrease	-0.665
rs1374755652	M273T	decrease	-2.22	decrease	decrease	-1.243
rs1253066888	P276L	increase	0.18	decrease	decrease	-0.216
rs1367937948	P276T	decrease	-0.78	decrease	decrease	-1.519
rs745699088	G282A	decrease	-0.3	decrease	decrease	-0.653
rs745699088	G282D	decrease	-0.14	decrease	decrease	-2.067
rs1297424973	G282S	decrease	-0.42	decrease	decrease	-1.442
rs121913042	L285P	decrease	-1.92	decrease	decrease	-1.848
rs946234163	E289A	Increase	0.21	decrease	decrease	-0,48
rs946234163	E289K	decrease	-0.86	decrease	decrease	-1.272
rs765023287	Q350E	decrease	-1.5	decrease	decrease	-1.706
rs1189525116	A398P	decrease	-1.73	increase	decrease	-0.827
rs995494519	L404F	decrease	-1.4	decrease	decrease	-1.495
rs1455473908	L404P	decrease	-2.27	decrease	decrease	-1.966
rs1272848697	G405R	decrease	-0.19	decrease	decrease	-0.354
rs863224254	G407R	decrease	-0.6	decrease	decrease	-0.622
rs898036117	R408S	decrease	-0.59	decrease	decrease	-2.137
rs1035967828	V419L	decrease	-0.18	decrease	decrease	-0.733
rs1035967828	V419M	decrease	-0.52	decrease	decrease	-1.174
rs1275136706	G428D	decrease	-0.25	decrease	decrease	-2.857
rs1064792874	G428S	decrease	-0.76	decrease	decrease	-2.158

Table 3: SNPs (UTR mRNA) that were predicted to be functionally significant by UTRscan

SNP ID	Nucleotide change	UTR position	Functional element
rs560027665	A/G	5'UTR	IRES signal
rs1462773364	G/T	5'UTR	IRES signal
rs999716676	G/A	5'UTR	IRES signal
rs1433459572	C/T	5'UTR	IRES signal
rs1297495211	G/C	5'UTR	IRES signal
rs1366475489	C/G	5'UTR	IRES signal
rs1235847706	G/A	5'UTR	IRES signal
rs1254678473	C/T	5'UTR	IRES signal
Ers1344522161	C/A	5'UTR	IRES signal
rs902800658	G/A	5'UTR	IRES signal
rs1025395522	A/G	5'UTR	IRES signal
rs895613086	A/C,G,T	5'UTR	IRES signal
rs1056976904	C/T	5'UTR	IRES signal
rs1433747756	G/C	5'UTR	IRES signal
rs1375747015	G/C,T	5'UTR	IRES signal
rs939884415	C/A	5'UTR	IRES signal
rs895147632	T/C	5'UTR	IRES signal
rs1055185491	C/T	5'UTR	IRES signal
rs1048500050	G/A	5'UTR	IRES signal
rs1409562773	C/T	5'UTR	IRES signal
rs541255050	C/G	5'UTR	IRES signal
rs1299593050	C/T	5'UTR	IRES signal
rs921271717	T/C	5'UTR	IRES signal
rs1040337014	G/A	5'UTR	IRES signal
rs577017185	T/A,C	5'UTR	IRES signal
SNP ID	Nucleotide change	UTR position	Functional element
rs750561393	T/A	5'UTR	IRES signal
rs912835892	C/G	5'UTR	IRES signal
rs912835892	C/G	5'UTR	IRES signal
rs1323544073	C/T	5'UTR	IRES signal
rs1264647720	G/T	5'UTR	IRES signal

©Biomedical Informatics (2024)

rs779073537	C/A,T	5'UTR	IRES signal
rs571316178	T/C	5'UTR	IRES signal
rs370124042	G/C,T	5'UTR	IRES signal

Table 4: Effect of nsSNPs of TYMP gene on Hydrogenic and hydrphobic interactions.

dbSNPID	SNP	Hydrogen bonds		Hydrophobic bonds	
		Wild type	variant	Wilde type	variant
rs767829510	T118R	Asp233	Val208 and Asp 233	Ile218, Leu251, Val234, Phe242, Gly119, Val241,	Leu251, Ileu214, Val 241, Asp 209, Phe242
				Ser117, Asp233 and	and thymine
				Thymine	
rs121913041	R202K	Leu198, Thr205, Thr207, Val208	Thr205 and Leu198	Ala 200, Val 204, Ile 214, Thyr199, Leu75, Leu213 and	Ala 200, Val204, Thr207, Val208, Leu75,
		and thymine		Ser217	Thyr199 and Ser217
rs121913041	R2021	Leu198, Thr205, Thr207, Val208	Thr205 and Leu198	Ala 200, Val 204, Ile 214, Thyr199	Val204, Ala200, Tyr199
		and thymine		Leu75, Leu213 and Ser217	Leu/5, Thr207, Leu148
10(15050(5	VOOD	1 202 1 6 210	1 202 1 5 210	A1 207 A 202 A 140 A1 214	Val208
rs1064/9286/	V208G	Arg202 and Ser210	Arg202 and Ser210	Ala206, Asp203, Leu148 and lle214	IIe214, AIa206 The118, Dec242 and Theorem
15/585/5/95	V241D	-	Inr118, lie214 and		Inr118, Pro243 and Inymine
re751803871	C144D	Vol185	Thr154 and Val185	Mot142 Cha187 Luc221 Thr154 and Ho184	Cip187 Luc221 Mot142 Ho184 High16 and
13/510050/1	3144K	Valios	THE 154 and Valies	Wet142, Gillio, Lys221, 111104 and he104	Sor126
rs121913037	G145R	Thymine Tyr199 and Leu155	Thymine Tyr199 and	Leu148 Glv153 His116 Thr118 and Glv119	Leu148 Glv153 His116
10121710007	GIIGR	mynnic, rymy und Ecuiso	Leu155	Ecurto, Gly100, Histio, Hillio una Gly117	Thr118 and Glv119
rs188802138	R146H	Tyr199, Glu159 and Asp156	Tyr199 and Asp156	Glv153 and Val166	Glv153 and Leu155
rs188802138	R146S	Tyr199, Glu159 and Asp156	Tyr199	Val166 and Gly153	Gly153 and Asp156
rs121913038	G153S	Asp156 and Lys157	Tyr199, Asp156 and	Gly147, Arg146, Leu155 and Gly145	Gly147, Gly146, Gly145 and
			Lys157		Leu155
rs948237404	V121G	Leu277	Leu277	Asp123, Val281, Ala398 and Pro276	Asp123 and Pro276
rs863224250	G120S	Asp123	Asp123	Thr151, Lys235 and Gly122	Thr151, Lys235 and Gly122
rs863224250	G120R	Asp123	Asp123, Lys275 and	Thr151, Lys235 and Gly122	Thr151, Lys235 and Gly122
			Met237		
rs997046759	G122S	Lys124	Lys124 and Cys280	Gly120, Leu277, Glu286 and Cys280	Gly120, Leu277, Pro276
					Glu286 and Val281
rs1388735279	G122D	Lys124	Lys124	Gly120, Leu277, Glu286 and Cys280	Gly120, Cys280, Pro276, Gly278
	D1000	C1 100 1 107 1105			Val281, Arg279, Leu277 and Glu286
151452194925	D123G	Giy120, Lys157, Val125	Gly120 and Lys157	Leu2/7, Val121 and Glu286	Vall21 and Vall25
*: 808026117	D409C	Clu412 and April 56		Histon Val204 Ase 202 Law 415 and Ared10	App202 Chr412 Histon Val204 and App410
1507003011/	K4085	Giu413 and Asp136	ListE0 and Ala406	Clu405 and Lou 115	Asp205, Glu415, Fils402, Val204 and Arg410
13003224234	G40/K	1115402	1115150 and Ala400	Giy405 and Leu415	Thr151 and His283

Discussion:

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an uncommon autosomal recessive disorder that arises from mutations in the TP gene, causing dysfunction of the TP enzyme. TP functions as a homodimeric enzyme, with each subunit consisting of an α -helical domain (α domain) and a substantial α/β domain. These two domains are separated by a significant cleft that accommodates the active site for substrate binding [33]. Multiple reported missense mutations in the TP gene have been associated with the development of MNGIE [34]. A non-synonymous single nucleotide polymorphism (nsSNP) refers to a single-base alteration within the coding region of a gene, leading to the substitution of one amino acid for another in the corresponding protein. Investigating nsSNPs with functional relevance to diseases is a crucial goal in the fields of human molecular biology and medical research. Nevertheless, the sheer abundance of identified SNPs poses challenges in elucidating their biological significance through traditional wet laboratory experiments [35]. Over the past few decades, many studies have employed computational methods to assess the influence of mutations on protein structure and function. These approaches are effective in predicting whether a single-nucleotide polymorphism (SNP) has the potential to lead to a disease. In this work, different computational tools were used to identify the impact of nsSNPs on TP structure and stability. The total of 513 nsSNPs was analyzed by PredictSNP, and 119 of them were predicted to be the most deleterious. Additionally, we found 82 nsSNPs in highly conserved positions, including 54 nsSNPs in

functional residues and 28 nsSNPs in structural residues.

The examination of the relationship between predicted amino acid alterations and the thermodynamic stability of proteins, as well as their impact on cellular stability and pathogenicity, implies that a decrease in stability may play a crucial role in the onset and progression of inherited diseases. It has been suggested that variants leading to the destabilization of proteins can disrupt their normal cellular functions, potentially giving rise to various genetic disorders [36]. In this study, the stability analysis revealed that the 79 nsSNPs reduced protein stability according to all the prediction tools employed. Only 18 deleterious nsSNPs were selected for molecular analysis based on their localization in the TP domains. This analysis focuses on the comparison of the differences in hydrogen bonds and hydrophobic interactions between the amino acids of the wildtype protein and its mutated forms. The deleterious SNPs (T118R, R202K, and R202T) contribute to thymine binding (Figure 2) and reveal a disruption of thymine binding (Tab 3). The T118R mutation does not form a covalent bond with thymine. Instead, this mutation is associated with TP dysfunction, which can lead to the accumulation of thymine and other metabolites. This accumulation, caused by impaired TP enzymatic function, can contribute to the onset of MNGIE disease.

Deleterious nsSNPs localized in close proximity to the binding site of TP (G120R, G120S, V121G, G122D, G122S, D123G, V208M, V208G, and V241D) are in highly conserved positions.

decrease TP's stability, leading to the disruption of the hydrogen and hydrophobic interaction, which may induce a change in the conformation of TP and may affect protein function. The two highly conserved nsSNPs (G407R and R408S) were localized in the important loop, which could potentially contribute to the integrity and stability of the closed conformation [37]. The structural property comparison between mutant forms and the WT protein showed a large change in the hydrophobic and hydrogen interactions (Figure 2). The residues Arg408, Ser409, and Arg410 make hydrogen bonds between the loop and the rest of the protein. Consequently, the two deleterious mutations are most likely to disrupt the structural and functional features of the WT protein. Eight nsSNPs (S144R, G145R, R146H, R146S, L148P, L148V, G152R, and G153S) are located in the glycine-rich loop, which has an important role in the binding of the catalytic phosphate [38]. Our in silico tests showed that the eight highlighted mutations are in a highly conserved region, decrease the TP's stability, and cause a vast variation in the residueneighbor interaction compared to the native form (Table 2). We suggest that the studied mutations overall could affect TP catalytic efficiency through two possible mechanisms: decreasing the structural stability of the protein and reducing its binding affinity towards the essential cofactor PI. In addition, phosphate-binding domains of TP are responsible for the initiation of the closed conformation of the active site [39]. We suggested that substitution of glycine with either arginine or serine may cause MNGIE disease occurrence by disrupting phosphate binding or rendering the TP catalysis less effective. Multiple experimental studies involving the TYMP gene have demonstrated that some of the 19 non-synonymous single nucleotide polymorphisms (nsSNPs) are associated with significant manifestations in subjects of diverse ages and phenotypes. For instance, the R202T mutation was discovered in the TP gene of a 55-year-old Dutch woman who presented with ophthalmoplegia, severe bilateral ptosis, muscle atrophy (while maintaining normal muscle strength), intact sensory testing, and hypoactive or absent tendon reflexes. Additionally, she exhibited extensive leukoencephalopathy and polyphasic potentials in her leg muscles [40]. Similarly, the V208M mutation has been described in a 61-year-old Anglo-American woman who presented with a complex array of health issues, including pancreatitis, small intestine ileus, recurrent nausea with vomiting, early satiety, colonic borborygmi, diverticulosis, and hepatopathy. Furthermore, she experiences demyelinating sensorimotor polyneuropathy and has developed ptosis, progressive external ophthalmoplegia (PEO), optic atrophy, hearing loss, patchy leukoencephalopathy, short-term memory disturbances, occasional inappropriate behaviors, insulin-dependent diabetes mellitus, and renal cell carcinoma identified in patients who met the clinical criteria for mitochondrial neurogastrointestinal encephalomyopathy [39]. Moreover, the G145R mutation has been identified in patients presenting clinical symptoms mitochondrial consistent with neurogastrointestinal encephalomyopathy, originating from different regions, including Israel and Puerto Rico. Similarly, the G153S mutation has been identified in affected patients with clinical symptoms

consistent with mitochondrial disorders [19]. All of the experimental data strongly align with the findings from our bioinformatic study, thus providing comprehensive evidence for and an explanation of the impact of deleterious nsSNPs on the TYMP gene. The IRES signal was described as a distinct RNA region that directly promotes the binding of 40S ribosomal subunits to mRNA without previous scanning [40]. The impairment of IRES sequences can deregulate mRNA translation and lead to various diseases or disease susceptibilities. Such as Charcot-Marie-Tooth disease (CMTX) [41], multiple myeloma [42], and Fragile X syndrome (FXS) [43]. We defined 32 SNPs in the IRES region; these SNPs may impair TP synthesis and lead to disease. The early detection of these potentially deleterious mutations in the TP gene could enable preventive intervention for individuals at risk, thereby paving the way for a reduction in the prevalence of MNGIE.

Conclusion:

We identified 119 deleterious nsSNPs within the coding region of the TP gene. Out of them, 79 nsSNPs were predicted to perturb protein stability. Moreover, the structural analysis of 18 SNPs revealed disruption of the network of interaction compared to the native form of TP, which could destabilize the TP-Thymine complex and consequently induce the occurrence of the MNGIE disease. Additionally, we identified 32 functional SNPs in the 5' UTR, which could affect protein synthesis and may lead to diseases. This study lays the groundwork for future research aimed at experimentally validating the predictions of our in silico analysis, thereby paving the way for a better understanding of the underlying mechanisms of MNGIE.

Conflicts of interest:

The authors declare that they have no conflicts of interest.

Data availability

All the datasets and structures generated for this study are available from the authors.

Acknowledgement:

The authors are thankful to the laboratory of genomics and human genetics at the Pasteur Institute of Morocco for providing encouragement and facilities.

References:

- [1] Nishino I et al. Science 1999 283: 689 [PMID: 9924029]
- Friedkin M, Roberts D. J Biol Chem. 1954 207 :245. [PMID: 13152099]
- [3] Yoshimura A *et al. Biochim Biophys Acta* 1990 **1034**:107 [PMID: 2328255]
- [4] Giatromanolaki A *et al. Clin Exp Metastasis* 1998 **16:** 665 [PMID: 9932613]
- [5] Ruckhäberle E *et al. Eur J Cancer* 2010 **46:** 549 [PMID: 20022486]
- [6] Giatromanolaki A *et al. J Pathol* 1997 **181:** 196 [PMID: 9120725]
- [7] Ranieri G et al. Int J Oncol 2002 21: 1317 [PMID: 12429983]

Bioinformation 20(3): 261-270 (2024)

- [8] Lee S et al. Br J Cancer 2010 103: 845 [PMID: 20700125] [
- [9] Huang L et al. Oncotarget 2016 7: 44185 [PMID: 27283904]
- [10] Iwagaki H et al. Res Commun Mol Pathol Pharmacol 1995 87: 345 [PMID: 7620827]
- [11] Aoki S et al. Oncol Rep 2006 16: 279 [PMID: 16820903]
- [12] [12] Kikuno N *et al. Cancer Res* 2004 **64:** 7526 [PMID: 15492279] [
- [13] Stevenson DP *et al. Am J Pathol* 1998 153: 1573 [PMID: 9811349]
- [14] Fujiwaki R *et al. J Clin Pathol* 1999 52: 598 [PMID: 10645230]
- [15] [15] Furukawa T *et al. Nature* 1992 **356:** Art. no 6371. [PMID: 1570012]
- [16] Kitazono M et al. Biochem Biophys Res Commun 1998 253: 797 [PMID: 9918807]
- [17] Nishino I *et al. Neuromuscul Disord* 2001 11: 7 [PMID: 11166160]
- [18] Hirano M et al. Neurologist 2004 10: 8 [PMID: 14720311]
- [19] Nishino I et al. Science 1999 283: 689 [PMID: 9924029] [
- [20] Chatterjee S & Pal JK. *Biol Cell* 2009 101: 251 [PMID: 19275763]
- [21] https://www.uniprot.org/uniprotkb/P19971/entry
- [22] Bendl J et al. PLOS Computational Biology 2014 10: e1003440 [PMID: 24453961]
- [23] Sim NL et al. Nucleic Acids Research 2012 40: W452 [PMID: 22689647]
- [24] Thompson BA *et al. Hum Mutat* 2013 34: 255 [PMID: 22949387]
- [25] Capriotti E & Fariselli P. Nucleic Acids Res 2017 45: W247

[PMID: 28482034]

- [26] Tang H & Thomas PD. *Bioinformatics* 2016 32: 2230 [PMID: 27193693]
- [27] Bromberg Y & Rost B. Nucleic Acids Res 2007 35: 3823 [PMID: 17526529]
- [28] Ben Chorin A *et al. Protein Sci* 2020 29: 258 [PMID: 31702846]
- [29] Mulder N & Apweiler R. In Comparative Genomics 2007 396: 59 [PMID: 18025686]
- [30] https://www.rcsb.org/structure/2j0f
- [31] https://spdbv.unil.ch/
- [32] Mignone F *et al. Nucleic Acids Res* 2005 33: D141 [PMID: 1570012]
- [33] Norman RA et al. Structure 2004 12: 75 [PMID: 14725767]
- [34] Pacitti D et al. Front Genet 2018 9: 669 [PMID: 30627136]
- [35] Doss CGP et al. Hum Genomics 2013 7: 10 [PMID: 23561625]
- [36] Stein A *et al. Trends Biochem Sci* 2019 44: 575 [PMID: 30712981]
- [37] Omari KE et al. Biochem J 2006 399: 199 [PMID: 16803458]
- [38] Mitsiki E et al. Biochem Biophys Res Commun 2009 386: 666 [PMID: 19555658]
- [39] Martí R et al. Ann Neurol 2005 58: 649 [PMID: 16178026]
- [40] Fitzgerald KD & Semler BL. Biochim Biophys Acta 2009 1789: 518 [PMID: 19631772]
- [41] Hudder A & Werner R. J Biol Chem 2000 275: 34586 [PMID: 10931843]
- [42] Chappell SA et al. Oncogene 2000 19: 4437[PMID: 10980620]
- [43] Choi J-H et al. Mol Cell Biol 2019 39: e00371 [PMID: 30478144]