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Abstract: 
Sterubin (7-O-Methyleriodicytol), a flavanone compound isolated from the leaves of Eriodicyton californicum and Eriodicyton 
angustifolium, has neuroprotective, anti-inflammatory, and antioxidant properties. Therefore, it is of interest to identify the potential 
targets for Alzheimer disease using network pharmacology. We report 25 overlapping targets among 100 potential targets of sterubin 
and 673 known targets of Alzheimer. APP, BACE-1, and AChE were among the ten hub targets enriched in biological processes and 
pathways relevant to Alzheimer's disease. Subsequent, molecular docking analysis shows that sterubin have optimal binding features 
with these hub gene targets for further consideration.  
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Background: 
Aging is commonly characterized by a gradual decline in 
various physiological functions, including cognitive ability, 
visual and auditory acuity, muscular strength, and sleep quality. 
This reduction is thought to result from loss of homeostatic 
balance within the body. Studies have suggested that aged 
brains experience various pathological changes including 
increased metabolic stress, reduced neurogenesis, and increased 
synaptic irregularities. Additionally, there is heightened 
expression of inflammatory markers and decreased expression 
of neuroprotective factors. Altered brain physiology, in 
conjunction with disruptions in the operation and 
synchronization of the circadian system, has been found to 
significantly enhance the occurrence of neurodegeneration, 
neurobehavioral insufficiencies, and cognitive aging [1]. 
 
Over the past 50 years, one of the primary objectives of 
pharmacological research on Alzheimer's disease (AD) has been 
the identification of cognitive enhancers [2]. AD is the 6th leading 
cause of death in the USA in 2019, In the years 2020 and 2021, 
COVID-19 attained a position among the top ten causes of 
mortality, and it ranked as the seventh-highest cause of death, 
costing over $232 billion annually, making it burdensome after 
cancer and heart disease [3]. As of 2021, approximately 5.8 
million individuals aged 65 years and above in the United States 
are living with AD. The disease is the primary cause of dementia 
in the aging population, affecting over 55 million people 
worldwide. According to the 2019 World Alzheimer’s Report, it 
is projected to increase to 88 million by 2050 [4]. AD is the most 
prevalent type of dementia and is characterized by persistent 
deterioration in cognitive abilities, behavior, social skills, and 
capacity to carry out daily activities independently. The etiology 
of AD is attributed to the accumulation of amyloid β and 

phosphorylated τ protein aggregates in the brain, resulting in 
neuronal degeneration of neurons [5]. Several hypotheses have 
been proposed to explain the cause of AD. Currently approved 
drugs for AD include cholinesterase inhibitors (donepezil, 
rivastigmine and galantamine) and NMDA receptor antagonist 
(memantine) [6]. Only two drugs (Aducanumab and 
Lecanemab) have been approved by the FDA for the past 21 
years [7, 8].  Each year, numerous drugs have been developed to 
treat AD in the hope of achieving successful outcomes; however, 
the majority of these attempts were unsuccessful at the 
preclinical stage, prior to the initiation of clinical trials [9]. 
 
Historically, various plant sources have been utilized to address 
learning and memory impairments. Additionally, there has been 
increasing interest in the potential benefits of natural resources 
in treating cognitive impairments, including AD, along with 
their associated pathogenesis [10]. Initially, alkaloid-containing 
plants were the primary focus of this study; it is well established 
that alkaloids strongly interact with receptors in the central 
nervous system. However, in recent years, there has been a shift 
towards studying flavonoids, which have been shown to be 
effective in preventing symptoms associated with 
neurodegenerative diseases such as Alzheimer's disease and 
Parkinson's disease.  Flavonols, flavanones, flavanones, 
anthocyanins, isoflavones, and flavan-3-ols are the main 
flavonoids that possess neuroprotective properties [11].  
 
Sterubin (7-O-Methyleriodicytol) is a flavanone compound that 
was first isolated from the leaves of Eriodicyton californium, 
Eriodicyton angustifolim (Yerba santa). It has a broad range of 
pharmacological properties such as high neuroprotective, anti-
inflammatory, anti-oxidant, and anti-amyloid properties, and is 
used to treat respiratory ailments such as cough, cold, asthma, 

mailto:sivaraj.rengaraj@avmc.edu.in


ISSN 0973-2063 (online) 0973-8894 (print)  

©Biomedical Informatics (2024) Bioinformation 20(4): 327-336 (2024) 
 

329 

 

bronchitis and age-related complications. Sterubin has been 
identified through old-age-associated phenotypic screening [12]. 
The immense pharmacological properties of sterubin make it a 
valuable and interesting compound. However, the molecular 
mechanisms responsible for this biological potential have not yet 
been systematically evaluated. Sterubin, which is a potent 
antioxidant, anti-cholinesterase, anti-aging, neuroprotective, 
anti-inflammatory and neurotrophic roles, ameliorating learning 
and memory, anti-amyloidogenic effects, suppressing the 
activation of microglia, and mediating inflammatory processes 
in the central nervous system (CNS) [13]. 
 
Network pharmacology is a new in silico drug discovery 
approach developed by Hopkins in 2007 to identify active 
compounds and putative molecular targets in a broad range of 
herbal formulae or simple herbs [14]. This tool operates based on 

systems biology and integrates multiple approaches, including 
poly-pharmacology, molecular network analysis, bioinformatics, 
and computer simulations. This strategy not only accelerates 
drug discovery but also saves time, energy, and money [15]. 
Network pharmacology involves the identification of genes 
related to compounds and diseases, the construction of a 
protein-protein interaction (PPI) network, and ultimately, the 
analysis and visualization of the network. The process begins 
with the construction of molecular networks from large 
databases, followed by identification of key nodes and biological 
pathways using network analysis. Finally, the network 
undergoes additional validation to confirm the interactions 
between the most active components and their potential targets 
[14]. Therefore, it is of interest to use network pharmacology 
(Figure 1) to investigate the mechanisms underlying the 
therapeutic effects of sterubin in AD’s.  

 

 
Figure 1: Workflow of network pharmacology analysis 
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Methodology: 
Pharmacokinetics properties and toxicity prediction: 
The PubChem database, which can be accessed at 
https://pubchem.ncbi.nlm.nih.gov [16], was used to retrieve the 
canonical SMILES of sterubin. SwissADME, a tool available at 
http://www.swissadme.ch [17], was used to analyze the drug 
likeness and physicochemical properties of sterubin, including 
its ADME properties. Finally, the toxicity of sterubin was 
assessed using OSIRIS, a tool available at 
https://www.cheminfo.org/flavor/cheminformatics/Utility/Pr
operty_explorer/index.html [18]. 
 
Swiss Target Prediction: 

Swiss target prediction http://www.swisstargetprediction.ch 
[19], an online platform designed for predicting the targets of 
small bioactive molecules, was employed to identify potential 
targets for sterubin. By utilizing this tool, the SMILES data of 
sterubin were imported into Swiss Target Prediction, with the 
species set to Homo sapiens. Predictions of potential targets 
were collected and analyzed. Swiss-target prediction is widely 
recognized as the leading software for determining the most 
likely protein targets of bioactive chemicals. 
 
Disease-Target Prediction:  
The potential targets were selected from GeneCards 
(http://www.genecards.org) [20] and DisGeNET 
(http://www.disgenet.org) [21] using the keyword 
“Alzheimer’s disease”. The target's standard name was obtained 
from UniProtKB, specifying the organism as "Homo sapiens.” The 
DisGeNET database was utilized to determine the gene-disease 
association (GDA) score, which was used to rank the association 
between genes and AD. In this study, targets with a GDA score 
greater than 0.1 were considered to be highly correlated with 
AD. The relevance score threshold for the targets in the 
GeneCards database was set to a minimum of 20. The two 
databases were subsequently combined, taking into account 
their respective targets. Furthermore, any duplicate genes were 
removed from the analysis [22]. 

 
Intersection of related targets: 
To more accurately assess the connection between AD-related 
targets and sterubin targets, we merged the two sets of targets 
and created Venn diagrams using an online tool from 
http://bioinformatics.psb.ugent.be/webtools/Venn [23]. The 
overlapping targets were selected for further analysis as 
potential therapeutic targets. 
 
Construction and analysis of PPI network: 
The overlapping targets were then imported into STRING 
database version 11.0 to construct a PPI network https://string-
db.org/[24]. The criteria for selecting the human organism were 
a minimum interaction score of greater than 0.4. Only 
interactions that met this criterion were deemed significant. 
Protein-protein interaction (PPI) networks are composed of 
nodes that signify target proteins and edges, which symbolize 
the interactions between proteins. The thickness of an edge is 

proportional to the combined score of the interaction. The degree 
of a node refers to the number of other nodes directly connected 
to it. A higher degree indicated a more important node. 
Following its development, this network was subsequently 
imported into Cytoscape (Version 3.7.2) for visualize and 
analyze its structure. The Cytoscape software may be obtained 
by visiting the Cytoscape website https://cytoscape.org/ [25]. 
The degree was calculated to identify core targets using 
CytoHubba. In this study, the top ten proteins ranked by degree 
were selected and designated as core targets [26]. 
 
GO and Kyoto Encyclopedia of genes and genomes (KEGG) 
enrichment analysis: 
The analysis of gene ontology and KEGG enrichment pathways 
was conducted utilizing the Database for annotation, 
visualization, and integrated discovery (DAVID), which is 
available at https://david.ncifcrf.gov/ [27]. The DAVID 
functional annotation tool was utilized to allocate functional 
roles at three levels - cellular component (CC), molecular 
function (MF), and biological process (BP) - to a selection of 
critical genes. DAVID is a functional enrichment database 
accessible through the Web, enabling researchers to comprehend 
the bioactivity of a multitude of genes. In the current study, a 
significance level of ≤ 0.05 was established, and the top ten GO 
enrichments and top ten KEGG pathways were selected for 
further analysis. These results were then visualized using an 
online tool available at http://www.bioinformatics.com.cn [28]. 
 
Molecular docking:  

Molecular docking is commonly used to validate the interactions 
between target proteins and ligands. In this case, the ligand 
(sterubin) was docked with the top ten potential targets. The 
structures of sterubin were retrieved from the PubChem 
database. The selected 3D structure of the ligands was retrieved 
from the PubChem compound database in SDF format, followed 
by conversion to PDB format and optimization using Bio-
Discovery Studio. Protein Data Bank https://www.rcsb.org/ 
[29] was used to obtain the crystal structures of top ten target 
genes. Prior to docking analysis, prominent active site prediction 
of top ten selected targets was carried out by PDB Sum database 
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/ [30]. 
Molecular docking was carried out using Auto dock 4.2.1 
software based on Lamarckian Genetic Algorithm was used to 
determine the appropriate binding modes of ligands. Grid maps 
were generated by Auto Grid program. Each grid was cantered 
at the crystal structure of the corresponding targets. A grid box 
with a dimension of 60 Å X 60 Å X 60 Å and spacing of 0.375 Å. 
For all ligands, random starting positions, random orientations, 
and torsions were used. The Docking parameters Number of 
Genetic Algorithm (GA) runs: 25, Population size: 150, 
Maximum number of evaluations: 2,500,000, Maximum number 
of generations: 27,000 were used for this study. All the others 
parameters were set as defaults. The structure with the lowest 
binding free energy and the most cluster members was chosen 
for the optimum docking conformation [31, 32]. 
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Table 1: Molecular properties of sterubin 

Properties Sterubin 

Molecular formula C16H14O6 

Molecular Weight 302.28 

Hydrogen Bond Donor 3 

Hydrogen Bond Acceptor 6 

Rotatable bond 2 

Topological Polar Surface Area (Å) 96.22 

Drug likeness  Good 

Lipinski Yes 

GI absorption High 

Clog P 2.09 

Solubility log -2.66 

BBB No 

Log Kp (skin permeation) -6.48 cm/s 

 
Table 2: Binding energy of sterubin and potential targets protein 

Target PDB ID Binding Energy 
Affinity (Kcal/mol) 

Sterubin Donepezil 
APP 3PMR -9.78 -8.33 

BACE-1 5HDZ -8.89 -7.47 

AChE 4EY7 -11.03 -8.84 
BuChE 4B0P -8.37 -7.9 
TNF-α 2FV5 -8.90 -7.5 

GSK-3β 1Q5K -7.5 -8.85 

ESR1 3ERT -6.34 -7.34 

PPARG 8B8W -7.95 -7.03 

MAOB 2Z5Y -8.87 -7.56 

MMP9 5TH6 -9.34 -6.32 

 
Results: 
Pharmacokinetic properties and toxicity prediction of sterubin 
The structural information of sterubin was obtained from 
PubChem shown in Figure 2, and the relevant ADME 
information was obtained from SwissADME. Table 1 displays 
the SwissADME predicted pharmacokinetic of sterubin. Sterubin 
complies with Lipinski rule of 5 and is predicted to have a good 
drug-likeness. The OSIRIS software was employed to evaluate 
the toxicological profile of sterubin, and the results indicated 
that sterubin does not possess tumorigenicity, mutagenicity, 
irritant or reproductive toxicity. Consequently, the findings 
suggest that sterubin is devoid of observable toxicity. 
 
Potential Targets: 

We obtained a total of 100 sterubin target genes from Swiss 
Target Prediction and 648 AD-related targets from DisGeNET 
and GeneCards. Based on the above results, we identified 25 
targets of sterubin against AD by overlapping of 100 sterubin 
associated targets and 648 AD related targets shown in Figure 3. 
 
Construction and analysis of PPI network of sterubin: 
25 overlapped targets were uploaded to STRING database to 
identify the interactions. Then, we constructed a PPI network 
Figure 4 consisting of 25 nodes and 79 edges, average node 
degree 6.32. After visualizing the PPI network in Cytoscape, 
CytoHubba plugin was utilized to find the Hub genes. The 
plugin offers twelve topological methods of analysis, from which 
the degree method was selected to predict Hub genes. The 
degree method is based on the highest degree of connectivity 
between targets, indicating that genes with the highest degree 
are likely to be key targets due to their increased connectivity 
with other genes. Top ten targets (APP, BuChE, TNF-α, AChE, 
GSK-3β, ESR-1, PPARG, BACE-1, MMP9 and MOA-B) are 
shown in Figure 5. 

 

 
Figure 2: Structure of sterubin 
 
KEGG pathway and GO analysis: 
We utilized the DAVID database to analyze the potential 25 
target genes for enrichment in GO and KEGG pathways. 
According to GO function analysis the top ten target of BP, MF 
and CC categories were chosen based on P<0.05, as shown in 
Figure 6. The Benjamini-Hochberg process was employed to 
correct the p-values for BP (90), CC (26) and MF (25), 
respectively. Target protein in the BP category were mainly 
involved cellular response to beta-amyloid, response to 
xenobiotic stimulus, negative regulation of pri-miRNA 
transcription from RNA polymerase II promoter, regulation of 
catalytic activity, cognition, positive regulation of protein 
phosphorylation, acetylcholine catabolic process and synapse 
organization. MF few examples are enzyme binding, identical 
protein binding, beta-amyloid binding, peptidase activity, 
estrogen receptor binding, protein homodimerization activity, 
RNA polymerase II transcription factor activity, 
acetylcholinesterase activity, collagen binding and cholinesterase 
activity. Then finally CC such as cell surface, extracellular 
exosome, platelet alpha granule lumen, synapse, peptidase 
inhibitor complex, membrane, extracellular space, plasma 
membrane and extracellular region. 
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According to KEGG pathway analysis predicted 14 pathways 
regarding the Anti-Alzheimer targets. Ten KEGG pathways 
were associated with the targets genes (p<0.05) shown in bubble 
plots of bioprocess and pathways were drawn by uploading the 
data to the bioinformatics platform Figure 7 as well as their 
enrichment ratios. Alzheimer’s disease (hsa05010), estrogen 
signalling pathway (hsa04915), pathways in cancer (hsa05200), 
arachidonic acid metabolism (hsa00590), chemical 
carcinogenesis-receptor activation (hsa05207), lipid and 
atherosclerosis (hsa05417), AGE-RAGE signaling pathway in 
diabetic complications (hsa05417), pathways of 
neurodegeneration-multiple disease (hsa05022), cholinergic 
synapse (hsa04725) and serotonergic synapse (hsa04726) these 
pathways were significantly enriched. 
 
Compound-pathways-targets network: 
We created a Drug-Pathway-Target network diagram to more 
clearly show how sterubin, targets, and pathway interact depict 

in Figure 8 using Cytoscape 3.7.2. Fourteen pathways, 25 core 
common targets with sterubin were connected. The network 
contained 41 nodes and 90 edges, in which the yellow shape 
represented the compound, targets were represented in green 
square and pathways using rose rectangular shape. 
 
Molecular docking analysis: 
For the molecular docking, ten target genes (APP, BuChE. TNF-
α, AChE, GSK-3β, ESR-1, PPARG, BACE-1, MMP9 and MOAB) 
were selected by comparing the hub genes with results provided 
by KEGG analysis in the pathway of Alzheimer’s disease.  As 
shown in Table 2, among the ten targets, (APP, BACE-1, AChE, 

BuChE, and TNF-α) showed the best interaction and lowest 
binding affinities towards sterubin compared to donepezil. 
According to receptor-ligand docking theory, it is generally 
accepted that the docking energy is inversely proportional to the 
binding affinity. Specifically, a more negative docking energy 
suggests a stronger binding affinity between the protein and the 
ligand [33]. 

 

 
Figure 3: (A) Venn diagram intersection of Key AD targets and sterubin targets. (B) Overlapped 25 targets of sterubin against AD. 
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Figure 4:  PPI networks of sterubin against AD linked targets 
 

 
Figure 5: Ten key targets (Hub genes) analyzed using Cytoscape 
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Figure 6: GO enrichment analysis of target genes. Top 10 selected according count of the gene of BP, CC & MF 
 

 
Figure 7: KEGG pathway enrichment analysis of targets gene. Y-axis represents significant pathway of target genes, X-axis show rich 
factor. 
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Figure 8: The “sterubin-pathway-target” network diagram. 
 
Discussion: 
The treatment of AD presents a significant challenge due to its 
complex pathology. Single-target drugs or those that focus on a 
single pathway may not be sufficient to achieve the desired 
therapeutic effects. Investigating AD pathology and developing 
novel anti-Alzheimer drugs can be facilitated through the 
utilization of network pharmacology approaches in conjunction 
with various natural products. These approaches hold great 
potential for addressing the complex nature of AD and may lead 
to more effective treatments [34]. Network pharmacology 
combines computational, experimental, and clinical approaches 
to study the pharmacological mechanisms of natural products. 
This integrative approach creates optimal conditions for 
exploring the complex interactions of natural products with 
biological systems. This shift has moved us from a “one-target, 
one-drug” approach to a “multiple-target, multiple-component-
therapeutics” approach [35]. Sterubin is derived from the leaves 
of Eriodicyton californium and Eriodicyton angustifolium. Previous 

studies reported that it have a significant antioxidant activity, 
protecting against oxytosis in HT22 cells and energy loss in PC12 
cells. It also exhibits potent anti-amyloid activity. It protects 
against multiple inducers of cell death, activating distinct death 
pathways. Sterubin strongly induces the antioxidant 
transcription factor Nrf2 and exhibits robust anti-inflammatory 
activity. Additionally, it has anti-hair greying properties and can 
prevent Aβ-induced decreases in short and long-term memory 
in a short-term model of AD [36].  
 
In the present study, we determine the pharmacokinetic 
properties, toxicity prediction, potential targets, and PPI 
network analysis of sterubin in relation to Alzheimer's disease 
(AD). Sterubin complies with Lipinski's rule of 5 and is predicted 
to have good drug-likeness and also free form toxicity. The 
study identified 25 targets of sterubin against AD by 
overlapping 100 sterubin-associated targets and 648 AD-related 
targets. A PPI network consisting of 25 nodes and 79 edges was 
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constructed, and the hub genes were identified using the 
CytoHubba plugin. The top ten targets were screened according 
to the degree and they are APP, BuChE, TNF-α, AChE, GSK-3β, 
ESR-1, PPARG, BACE-1, MMP9 and MOAB. 
 
According to GO and KEGG pathway analyses revealed that the 
top ten targets were involved in various biological processes, 
molecular functions, and cellular components. KEGG pathway 
analysis predicted 14 pathways related to Anti-Alzheimer 
targets, with ten pathways significantly enriched. A drug-target-
pathway network diagram was created using Cytoscape to show 
the interactions among sterubin, targets, and pathways. By 
molecular docking analysis revealed that five targets (APP, 
BACE-1, AChE, BuChE, and TNF-α) showed good binding 
affinity towards sterubin compared to donepezil. The range of 
binding score of APP -9.78 Kcal/mol, BACE-1 -8.89 kcal/mol, 
AChE -11.03 kcal/mol, BuChE -8.37 kcal/mol and TNF-a -8.90 
kcal/mol. The present research provides a comprehensive 
overview of sterubin, detailing their potential targets and the 
pathways involved in treating AD through network 
pharmacology. This serves as a foundation for future 
experimental research. 
 
Conclusion: 
We utilized network pharmacology and database mining to 
detect molecular targets (APP, BACE-1, AChE, BuChE, and TNF-
α) for sterubin for Alzheimer's disease. Molecular docking 
analysis data shows that sterubin have optimal binding features 
with these hub gene targets for further consideration.  
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