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Abstract: 
Accurate colorectal cancer diagnosis from histopathological images is crucial for effective treatment. Therefore, it is of interest to 
describe a novel framework that combines self-supervised contrastive learning (SSCL) with Grad-CAM-based interpretability for 
classifying hyperplastic polyp (HP) and sessile serrated adenoma (SSA). A ResNet50 encoder is first pre-trained using SSCL to learn 
rich feature representations from unlabeled images, minimizing the need for manual annotations which are then fine-tuned in a 
supervised setting, achieving a classification accuracy of 85.86%. Grad-CAM is used to generate visual explanations, highlighting 
critical regions influencing the model’s decisions. This interpretable, data-efficient approach outperforms conventional CNN 
methods, offering improved diagnostic accuracy and enhanced trust in automated pathology. 
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Background: 

Colorectal cancer (CRC) is the third most common type of cancer 
worldwide, following lung and prostate cancer in males and 
breast and lung cancer in females, developed from the parts of 
the intestine, mainly, the regions involved are the colon and 
rectum [1]. In 2020, more than 1.9 million new cases of colorectal 
cancer and more than 9,30,000 deaths due to colorectal cancer 
were estimated to have occurred worldwide and by 2040, the 
burden of colorectal cancer will increase to 3.2 million new cases 
per year (an increase of 63%) and 1.6 million deaths per year (an 
increase of 73%) [2]. Targeted therapies that target important 
pro-oncogenic signaling pathways have been developed as a 
result of a growing understanding of CRC biology, but only a 
small percentage of patients respond well to these therapies [3]. 
With the advancements in Deep learning (DL) methods and its 
application in healthcare sector, digital pathology is not rescued 
from this and has emerged as a key tool in the identification, 
diagnosis and prognosis of tumours [4-5]. A number of studies 
utilizing artificial intelligence (AI) techniques for digital 
histopathology have tremendously increased in recent years [6-

8]. Among various imaging modalities, histopathological image 
analysis stands out as a critical tool due to its ability to provide 
detailed insights into cellular structures, essential for the 
accurate diagnosis of cancers such as colorectal cancer [3]. 
However, traditional methods of histopathological image 
interpretation have predominantly relied on manual 
examination by histopathologists; therefore, there is an urgent 
need for automated, high-performance diagnostic systems to 
assist clinicians in making faster and more accurate decisions [9]. 
Deep learning models, particularly Convolutional Neural 
Networks (CNNs), have shown state-of-the-art performance in 
image classification tasks by learning hierarchical feature 
representations from raw data [10]. These models can 
automatically extract intricate features from histopathological 
images, which greatly minimizes the need for manual feature 
engineering and CNNs have been successfully used in a wide 
range of medical imaging applications, from tumor detection in 
radiology images to organ segmentation in MRI scans [11]. Their 
robust generalization capabilities across different datasets, such 
as histopathological images, have been extensively shown in 
recent research [12-13]. Several studies have been conducted on 
histopathological colorectal images, for diagnosis and 
classification of adenoma, or polyps [14-15]. Dif et al. in a paper 

proposed a deep learning-based CNN approach for 
histopathology colorectal classification [16]. Wei et al. utilized the 
simple CNN based deep learning architecture for the colorectal 
cancer polyp classification [17]. Gupta et al. [18] also proposed 
the CNN based model IR-v2 Type 5 on the whole slide images of 
histopathology colon tissue that are classified into normal and 
abnormal patches. The paper proposed MA_ColonNet, a CNN 
based model that distinguishes Colon Adenocarcinoma and 
Colon Benign Tissue of Colon Histopathological Images [19]. 
Despite the enormous success of DL techniques in imaging tasks, 
deep learning models typically require large amounts of labeled 
datasets for training and the scarcity of labeled data in medical 
domain, necessitates the development of self-supervised 
algorithms, where models are trained without labeled data [20]. 
One of these promising approaches is contrastive learning where 
frameworks such as SimCLR and MoCo [21], focuses on learning 
representations by comparing positive (similar) and negative 
(dissimilar) pairs of images by reducing the contrastive loss 
function that enable them to learn discriminative features for 
crucial tasks, such as classification where the availability of 
annotated medical data is limited [22]. This study utilizes self-
supervised contrastive learning (SSCL) to enhance the learning 
of robust and discriminative features from unlabeled colorectal 
cancer histopathological images applying CNN based ResNet50 
architecture as an encoder backbone for fine-tuning and later 
projection head and classification head are added on the base 
encoder to classify the colorectal cancer histopathological images 
distinguished into hyperplastic polyp and sessile serrated 
adenoma [23]. To improve the interpretability and clinical 
relevance of the model, we integrate Grad-CAM, a visualization 
technique that generates heatmaps to highlight the regions of the 
image that most influence the model's decision with the 
bounding to detect the highlighted regions [24]. Therefore, it is 
of interest to report that by combining self-supervised 
contrastive learning, advanced CNN architectures, and Grad-
CAM for interpretability, our framework creates a highly 
accurate and interpretable model for colorectal cancer 
classification that not only aims to enhance classification 
performance but also ensures the model's transparency and 
trustworthiness, facilitating its potential integration into clinical 
workflows to assist pathologists in making accurate and timely 
diagnosis, ultimately improving patient outcomes and 
advancing computational pathology practices. 
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Materials and Methods: 

This section describes the steps starting from data collection to 
model building, training and prediction on the colorectal cancer 
histopathological images for classification. 
 
Data collection and distribution: 
Dataset used in the present study is taken from the MHIST - a 
publicly available dataset [25]. Dataset has two classes - namely 
hyperplastic polyp (HP) and sessile serrated adenoma (SSA). 
This dataset comprises 3,152 hematoxylin and eosin (H & E) - 
stained Formalin Fixed Paraffin-Embedded (FFPE) fixed-size 
images of colorectal polyps of which 2162 belongs to HP class 
while 990 belong to SSA class. Since, there is an imbalance in the 
dataset; I used 990 images from the HP category to balance the 
dataset with the SSA category. HPs are typically benign with 
elongated polyps while SSAs are precancerous lesions with 
broad-based crypts. The dataset (total images - 1980) is divided 
into training (1782) and testing (198) sets in a ratio of 90:10. 

Figure 1 presents the bar and pie charts for the data distribution 
for both the classes and data splitting into training and testing 
sets. 
 
Data pre-processing: 

Data pre-processing is a crucial step for training any deep 
learning model. In a self-supervised contrastive learning 
approach, data augmentation plays an important role. Various 
augmentations were applied to the training data such as random 
crop, random horizontal flip and random vertical flip, gaussian 
blur, random affine, and color jittering. Normalization is applied 
so that the pixel intensities lie in range 0-1. Each image generates 
two views after the augmentation technique for creating the 
positive and negative pairs as shown in Figure 2, which are 
necessary for training the SSCL model. Figure 2 represents the 
original images from each class before pre-processing and after 
applying the augmentation techniques. 

 

Figure 1: Data distribution between HP and SSA classes (left) and training (1782) and testing (198) images (right) 
 
Self - supervised model training: 

Self-supervised contrastive learning framework relies on 
unlabeled data for learning the complex patterns in the images 
that discriminate between the positive pairs by pulling them 
together from the dissimilar pairs by pushing them apart. In this 
contrastive learning framework, I have implemented ResNet50 
architecture as an encoder backbone. Last few layers from the 
architecture were removed and a linear custom projection head 
was built on top of that for learning the features from the 
positive and negative pairs. That forms the SSL pre-training part 
in which unlabeled data was fed as an input for training. On top 
of that, a classification head was built. After training on the 
unlabeled dataset, finetuning was done with labeled data and 
finally, binary classification was performed on the test data for 
categorizing the histopathological images into HP and SSA 
classes, respectively. Contrastive loss plays a major role. I have 
used the NT-Xent [26] loss function for representative learning. 
Temperature is an important parameter in this loss function 
which has been set to a value of 0.7. All the work has been done 
using python [27] and pytorch [28] libraries on Nvidia RTX 1070 

GPU machine. Figure 3 illustrates the methodology employed in 
the research. 
 

 
Figure 2: Original and augmented images 
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Explainable AI (GradCAM) technique: 

Hyperparameters are the parameters that are explicitly defined 
before the training process. They are important for model 
training. Table 1 presents the hyperparameters employed 
during the training process. 
 
Table 1: Hyperparameters Settings for colorectal cancer classification 

Parameters Pre-training Fine-tuning 

Learning rate 3.00E-04 1.00E-04 
Epochs 200 100 
Batch size 128 64 
Loss NT-Xent Loss Cross-entropy 
Optimizer Adam [29] Adam 

 

 
Figure 3: Representation of the proposed methodology for 
colorectal cancer classification using 
 
Evaluation and prediction: 
After successful training of the model, prediction was done on 
the test dataset. The performance of the trained model was 
evaluated by calculating the performance metrics such as 
accuracy, precision, recall and f1-score. All these metrics are 
calculated as given by equations shown. 

Accuracy = 
     

           
                       (1) 

 

Precision = 
  

     
                                    (2) 

 

Recall =  
  

     
                                         (3) 

 

F1-score = 
                  

                
                     (4) 

 
Where, TP = True Positive, FP = False Positive, TN = True 
Negative, and FN = False Negative. 
Besides measuring the above metrics, I have plotted the 
confusion matrix representing the ground truth and predicted 
labels in each class. To understand the decision taken by the 
model, interpretable Gradient-weighted Class Activated 
Mapping (GradCAM) technique is applied and identify which 

specific regions of the histopathological images have been 
considered while making decision. 
 
Table 2: Performance Evaluation metrics of the SSCL model 

Class/Metric Accuracy Precision Recall F1-Score # of Samples 

HP (0) 85.86% 86.61% 84.85% 85.71% 99 
SSA (1) 85.86% 85.15% 86.87% 86% 99 

 

 
Figure 4: Confusion matrix for the SSCL model 
 
Results: 
To assess the model’s performance on colorectal cancer 
histopathological images, the evaluation metrics are calculated 
and have been tabulated in Table 2. Accuracy achieved is 
85.86%, while the precision and recall for both the classes i.e., HP 
and SSA are 86.61% and 84.85%, and 85.15% and 86.87, 
respectively. These outcomes suggest that the model is trained 
well enough to capture the complex patterns in the cancerous 
images, classifying the images with high accuracy. Confusion 
matrix has been represented in Figure 4, providing useful 
insights into the model’s performance suggesting that the model 
is able to identify and classify the images well. Figure 5 
represents the GradCAM visualization maps of some image 
samples in which specific regions are identified and highlighted. 
Bounding boxes have been drawn for better visibility that are 
most influential contributing to the model’s prediction, helping 
in the interpretability of the framework. Sub Figure 5(a) shows 
the original hyperplastic polyp image, with the heatmap and 
bounding box drawn on the original image overlapping the 
heatmap. Similarly, Figure 5(b) presents the sessile serrated 
adenoma histopathology image. 
 
Subfigure (a) Left: Original hyperplastic polyp image.  
 
Middle: GradCAM heatmap highlighting the most influential 
region contributing to the model's prediction.  
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Right: Model correctly predicted the image as HP with the 
bounding box overlaid on the original image.  
 
Subfigure (b) Left: Original Sessile Serrated Adenoma image.  

Middle: GradCAM heatmap for model’s prediction.  
 
Right: SSCL Model predicted as SSA 

 

 
Figure 5: GradCAM Visualization using Self Supervised Contrastive Learning (SSCL) colorectal histopathological image 
classification.  
 
Discussion: 

This study demonstrates the promising potential of self-
supervised contrastive learning (SSCL) in classifying colorectal 
cancer histopathology images, addressing one of the major 
challenges in medical imaging: the scarcity of large annotated 
datasets. Unlike traditional supervised deep learning, which 
requires extensive labeled data, SSCL enables the model to learn 
rich and discriminative features from unlabeled 
histopathological images. These images, though plentiful, often 
remain underutilized in clinical diagnosis due to the annotation 
bottleneck. The proposed method employs a ResNet50 encoder 
backbone, pre-trained with contrastive learning, and 
subsequently fine-tuned in a supervised manner to differentiate 
between two colorectal lesion types: hyperplastic polyp (HP) 
and sessile serrated adenoma (SSA). The model achieved a 
classification accuracy of 85.86%, along with balanced precision 
and recall for both classes, indicating that it effectively captured 
subtle morphological differences between tissue structures. This 
performance rivals previous studies relying mainly on fully 
supervised methods and large annotated datasets. Contrastive 
learning works by forming positive and negative image pairs 
through augmentation techniques, teaching the model to become 
invariant to typical histological variations such as orientation, 
scale, and staining differences. These natural variations are 

common due to sample preparation and scanning 
inconsistencies in histopathology. The study applied 
augmentations like random cropping, flipping, color jitter, and 
Gaussian blur to enrich the feature space and guide the model to 
focus on biologically relevant structures instead of superficial 
pixel differences. The use of the NT-Xent loss function with a 
temperature parameter of 0.7 further refined the embedding 
space, encouraging closer clustering of similar images and better 
separation of dissimilar ones, thus enhancing class 
discrimination. 
 
A critical contribution of this work is the integration of 
interpretability through Gradient-weighted Class Activation 
Mapping (GradCAM). This technique addresses a key challenge 
in clinical AI deployment: transparency. GradCAM 
visualizations produced heatmaps highlighting regions that 
pathologists consider diagnostic, such as glandular architectures 
and cell morphology, boosting confidence in the model's 
predictions. Beyond validation, these interpretability maps can 
serve as diagnostic tools, potentially revealing subtle 
morphological features significant for early detection and 
differential diagnosis. This is especially relevant in 
distinguishing benign HP from SSA, a neoplastic precursor to 
colorectal cancer, which has important implications for patient 
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management. The model's performance was further validated 
through confusion matrices and balanced F1-scores, confirming 
its robustness in handling class imbalance. The researchers 
curated the dataset by downsampling the dominant HP class to 
match SSA quantities, promoting fair learning and reducing bias. 
However, they acknowledge that future work could explore 
more advanced imbalance management techniques, such as 
synthetic minority oversampling or focal loss, to improve 
performance on naturally imbalanced datasets without losing 
valuable information. While the results are encouraging, the 
study highlights several avenues for future improvement and 
expansion. The current focus on binary classification between 
HP and SSA represents a simplified clinical scenario. Extending 
the system to multiclass classification, including other adenoma 
types, carcinoma, and normal tissue, would enhance clinical 
applicability. Fortunately, the scalability of self-supervised 
pretraining allows leveraging vast quantities of unlabeled 
whole-slide images (WSIs) to build more generalizable feature 
extractors. Additionally, the use of ResNet50 as the backbone 
could be updated in future work. More advanced architectures, 
such as vision transformers or domain-adapted convolutional 
neural networks optimized for histopathology, may deliver 
superior performance in capturing both global context and fine-
grained patterns. Another key direction is multimodal learning, 
integrating clinical metadata like patient age, gender, genetic 
markers, and clinical history with image data. Such integration 
would more closely mimic real-world diagnostic decision-
making by pathologists, potentially improving accuracy and 
personalized diagnosis. From a practical standpoint, clinical 
integration demands rigorous validation across independent 
cohorts and different scanning platforms to ensure robustness 
and generalizability. Prospective clinical trials will be essential to 
evaluate the impact of the AI system on diagnostic accuracy, 
workflow efficiency, and patient outcomes. Engaging 
pathologists in refining the user interface, especially through 
interactive visualization tools for GradCAM heatmaps, will be 
crucial to facilitate smooth adoption and clinical trust. In 
conclusion, this research underscores the significant advantages 
of self-supervised contrastive learning for colorectal cancer 
histopathology classification. By addressing the annotation 
bottleneck and providing interpretable decision-making via 
GradCAM, the approach achieves competitive classification 
performance while enhancing clinical transparency and trust. 
The synergy of self-supervised learning and interpretability 
marks an important milestone toward AI-assisted precision 
diagnostics. With continued advancements in model 
architectures, dataset diversity, and multimodal fusion, SSCL-
based frameworks are well-positioned to revolutionize colorectal 
cancer pathology, ultimately benefiting patients through earlier, 
more accurate diagnoses. 
 
Conclusion: 
Early prediction of colorectal cancer significantly aids in accurate 
diagnosis and effective treatment planning. This study 
successfully applied a self-supervised contrastive learning 
approach using CNNs to classify histopathological images into 

HP and SSA, achieving an accuracy of 85% and demonstrating 
strong performance across various evaluation metrics. 
Additionally, the use of Grad-CAM for model interpretability 
provided valuable insights into the decision-making process, 
enhancing clinical confidence and supporting improved patient 
care. 
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