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Abstract: 

Lung adenocarcinoma (LUAD), the most common kind of lung cancer, is characterized by altered gene expression and DNA 
methylation. This study used TCGA to evaluate methylation and expression data from LUAD. Differential analysis revealed 7313 
methylated genes and 250 upregulated genes. Integration identified "Hypo-Up" genes, which are hypomethylated and elevated, 
indicating carcinogenic potential. Further protein-protein interaction studies will reveal important seed genes. Data shows severe 
epigenetic and transcriptome abnormalities in LUAD and suggest new biomarker possibilities. 
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Background: 
Lung adenocarcinoma (LUAD) is the most prevalent subtype of 
non-small cell lung cancer (NSCLC), accounting for roughly 40% 
of all diagnosed cases [1]. LUAD is a complex disease 
characterized by aberrant gene expression and DNA 
methylation patterns. These molecular alterations contribute to 
uncontrolled cell proliferation, invasion and metastasis, 
ultimately leading to poor patient prognosis [2]. Delving into the 
interplay between DNA methylation and gene expression 
profiles holds immense potential for elucidating the underlying 
mechanisms of LUAD development and progression [3]. 
Analyzing gene expression profiles alongside methylation data 
offers a comprehensive perspective on how these molecular 
changes influence LUAD biology. By integrating DNA 
methylation and gene expression data, researchers can identify 
genes that are hyper methylated (silenced) and under expressed, 
potentially uncovering novel tumor suppressor genes in LUAD 
[4]. A number of genes that control the invasion and survival of 
cancer cells are expressed during this process. Therefore, as 
prospective pharmacological targets in the drug development 
process, medications that alter the genes or proteins that control 
cancer cell survival, metastasis, apoptosis and invasion are 
crucial [5]. Furthermore, integrating these profiles with clinical 
data like patient prognosis and response to therapy can lead to 
the identification of methylation and gene expression 
biomarkers that can be used for early diagnosis, treatment 
stratification, and the development of targeted therapies for 
LUAD patients [6]. Chronic exposure to cigarette smoke induces 
various genetic and epigenetic alterations, paving the way for 
tumor initiation and progression [7]. DNA methylation often 
involves hypermethylation, where a methyl group (CH₃) is 
added to specific DNA regions rich in cytosine-guanine 
dinucleotides (CpG islands). This disrupts gene expression, 
particularly silencing tumor suppressor genes [8]. Genes crucial 
for cell cycle control, DNA repair and apoptosis (cell death) are 
frequently silenced by hyper methylation in LUAD [9, 10]. The 
transcriptional silence of tumor suppressor genes is frequently 
linked to CpG island hypermethylation, which is defined by the 
excessive methylation of promoter-associated CpG islands [11].  
 
The molecular heterogeneity and clonal development seen in 
lung adenocarcinoma are a result of the dynamic interaction 
between global hypomethylation and CpG island 
hypermethylation. Notably, new research has shown many 
DNA methylation subgroups in lung cancer, each with its own 
methylation signatures and clinical characteristics [12]. 
Hypomethylation can lead to the abnormal activation of 

oncogenes – genes that promote uncontrolled cell division and 
survival, a hallmark of cancer [13]. Additionally, it might cause 
genomic instability, increase the risk of mutations and further 
promoting tumorigenesis. Finding DNA methylation biomarkers 
has great potential to enhance lung cancer patients' early 
detection, prognosis and treatment stratification [14]. Gene 
expression profiling has also revealed significant alterations in 
LUAD compared to normal lung tissue. The upregulation of 
oncogenes, genes that promote cell proliferation and survival, is 
a hallmark of LUAD. Conversely, tumor suppressor genes are 
often downregulated, contributing to uncontrolled cell growth 
and tumor formation [15]. This surge in oncogenic activity 
throws the natural cellular brakes off, leading to    a relentless 
drive for LUAD cells to multiply. Understanding how these 
upregulated oncogenes function is essential, as they hold the 
potential to be future targets for therapeutic strategies. By 
developing drugs that specifically target and inhibit these 
hyperactive oncogenes, researchers aim to restore cellular 
balance and halt the out-of- control growth of LUAD tumor [16]. 
By integrating DNA methylation and gene expression data, 
researchers can gain a more comprehensive understanding of 
the interplay between these epigenetic modifications in LUAD. 
And this approach can shed light on the functional consequences 
of methylation events and identify genes that are critically 
involved in lung cancer development [17]. Researchers can 
identify genes with differential methylation patterns linked to 
aberrant gene expression in lung cancer by using statistical 
modeling and computer techniques [18]. Also numerous genes 
and pathways influenced by changes in DNA methylation have 
been discovered by these integrative analyses, providing insight 
into new biomarkers and potential therapeutic targets for 
precision medicine therapies [19]. Therefore, it is of interest to 
systematically investigate and report the integrative analysis of 
DNA methylation and gene expression profiles in lung 
adenocarcinoma, with the goal of identifying novel biomarkers 
and potential therapeutic targets relevant to disease diagnosis, 
prognosis, and treatment. 
 
Methodology: 
Differentially methylated biomarker gene identification: 
Methylation data collection: 

DNA methylation data for this study was retrieved from The 
Cancer Genome Atlas (TCGA) database, a comprehensive 
resource for cancer genomics data. The data specifically focused 
on lung adenocarcinoma (LUAD) and included samples from 
Asian individuals. Eight samples of normal lung tissue and eight 
LUAD samples were obtained from the TCGA database using 
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GDC Tool. Illumina Infinium Human Methylation technology 
was employed by TCGA to generate methylation profiles for 
these samples. This approach allows for genome-wide analysis 
of DNA methylation patterns in both normal and cancerous lung 
tissue from Asian individuals. 
 
Data pre-processing: 
In preparation for analysis, row containing any missing values 
(NA) were systematically removed from the datasets. 
Methylation beta values were transformed into M values using 
the formula m = log2 (beta / (1 - beta)), ensuring a uniform 
representation across the methylation dataset. Subsequently, the 
datasets were merged, yielding a consolidated matrix file 
containing data from eight normal lung tissue samples and eight 
Lung Adenocarcinoma (LUAD) samples, facilitating 
comprehensive methylation analysis.      
 
Identification of DMRs: 

To identify regions of the genome exhibiting significant 
methylation differences between lung adenocarcinoma (LUAD) 
and normal lung tissue samples, a differential methylation 
analysis was performed using the R package limma. Limma 
compares methylation beta values between groups and employs 
linear models to account for potential confounding factors. To 
control for the high number of statistical tests inherent in such 
analyses, p-values were adjusted for false discovery rate (FDR) 
using the Benjamini and Hochberg (BH) method. A stringent 
cutoff of adjusted p-value <0.05 was applied to ensure 
statistically significant differences in methylation. Additionally, 
differentially methylated CpG sites (DMSs) were required to 
exhibit an absolute delta beta value greater than 0.2. This 
threshold defines the minimum magnitude of methylation 
difference (beta values) considered biologically relevant for 
identifying DMRs. By combining these criteria, we aimed to 
identify a robust set of DMRs that are statistically significant and 
exhibit substantial methylation alterations associated with 
LUAD development. 
 
Identification of differentially methylated genes (DMGs): 
Following the identification of differentially methylated regions 
(DMRs), we further explored the association between these 
regions and genes. DMRs can encompass regulatory elements 
that influence gene expression. Hypermethylated DMRs, 
characterized by an adjusted p-value < 0.05 and a delta beta 
value greater than 0.1, were hypothesized to potentially silence 
genes located within or nearby the region. Conversely, 
hypomethylated DMRs, identified with a similar p-value 
threshold but a delta beta value less than -0.1. Might be 
associated with increased gene expression. By linking DMRs to 
genes, we aimed to pinpoint genes whose expression might be 
regulated by DNA methylation changes and potentially play a 
role in lung adenocarcinoma development. This analysis allows 
us to investigate the functional consequences of the identified 
methylation alteration. 
 
 

Gene expression biomarker identification: 
Expression data collection: 
DNA methylation data for this study was retrieved from The 
Cancer Genome Atlas (TCGA) database, a comprehensive 
resource for cancer genomics data. The data specifically focused 
on lung adenocarcinoma (LUAD) and included samples from 
Asian individuals. Eight samples of normal lung tissue and eight 
LUAD samples were obtained from the TCGA database. 
Illumina Infinium Human Methylation technology was 
employed by TCGA to generate methylation profiles for these 
samples. This approach allows for genome-wide analysis of 
DNA methylation patterns in both normal and cancerous lung 
tissue from Asian individuals. 
 
Pre-processing: 
In the pre-processing stage, rows containing zero values were 
eliminated from the dataset, and the remaining values were 
rounded to whole numbers for further analysis. Protein-coding 
genes were selectively retained in the expression profile data 
during the pre-process. 
 
Identification of differentially expressed genes (DEGs): 
Differential expression between LUAD (N = 5) and normal lung 
tisssue (N = 2) samples was analyzed with the R limma package. 
We adjusted each p-value as false discovery rate (FDR) using the 
Benjamini and Hochberg (BH) method. We used the log-
transformed expression value to identify differentially expressed 
genes (DEGs), including upregulated genes with an adjusted p-
value < 0.05 and logFC (fold change) > 1, and downregulated 
genes with an adjusted p-value < 0.05 and logFC < −1 in LUAD 
compared with normal lung tisssue. 
 
Integration of DEG and DMG: 
To correlate the relationship between methylation and 
expression, we analysed differentially methylated and expressed 
genes (DMEGs). One specific group of interest within DMEGs 
are genes classified as Hypo-Up. These genes exhibit 
hypomethylation, meaning a decrease in methylation compared 
to the normal state. This decrease in methylation is associated 
with increased expression, suggesting the genes are potentially 
more active due to the reduced suppressive effect of 
methylation.  
 
The protein-protein interaction network analysis: 
For protein–protein interaction (PPI) analysis, the common 
targets were imported into the STRING database. It was then the 
generated PPI network was loaded into Cytoscape for the 
analysis seed Gene responsible for LUAD. The investigation 
took into account for parameters, closeness centrality, 
betweenness centrality, degree, and radiality. To identify 
network modules and SEED gene, the Molecular Complex 
Detection (MCODE) algorithm in Cytoscape with the following 
parameters: degree cutoff = 2, K-core = 2, max-depth = 100, and 
node score cutoff = 0.2 were used.  
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Results: 

In the investigation of differentially methylated regions (DMRs) 
in lung adenocarcinoma (LUAD), we conducted a meticulous 
analysis of methylation data from both cancerous and normal 
samples using the R package limma. Each p-value obtained from 
the comparison was rigorously adjusted for false discovery rate 
(FDR) using the Benjamini and Hochberg (BH) method, ensuring 
statistical robustness. DMRs were identified based on stringent 
criteria: an adjusted p-value < 0.05 and an absolute delta β-value 
> 0.2, emphasizing significant distinctions in methylation levels 
between LUAD and normal tissue samples. Notably, this 
analysis revealed a total of 7313 genes as DMRs out of the 9253 
CpG sites examined. These findings highlight substantial 
alterations in methylation patterns across various genomic 
regions in LUAD, suggesting potential implications for 
understanding the molecular mechanisms underlying lung 
cancer development and progression. In the identification of 
differentially methylated genes (DMGs) in lung adenocarcinoma 
(LUAD), we employed a stringent methodology using the limma 
package to identify hypermethylated and hypomethylated 
differentially methylated regions (DMRs). Hypermethylated 
DMRs were identified with an adjusted p-value <0.05 and a 
delta β-value > 0.2, while hypomethylated DMRs were detected 
using a similar threshold but with a delta β-value < -0.2. This 
rigorous approach allowed us to pinpoint significant epigenetic 
alterations specific to LUAD. Additionally, we utilized the 
IlluminaHumanMethylationEPICanno.ilm10b2.hg19 package to 
match CpG loci with their corresponding genes, enabling the 
association of methylation changes with specific genomic 
regions. Among the identified genes, a total of 5,152 exhibited 
hypermethylation, while 2,161 genes displayed 
hypomethylation. These findings highlight the presence of 
distinct epigenetic modifications in LUAD, suggesting potential 
implications for understanding the underlying mechanisms of 
this type of lung cancer and identifying novel biomarkers or 
therapeutic targets. 
 
In the identification of differentially expressed genes (DEGs) 
using the R-DEGSeq2 package, we ensured statistical rigor by 
computing adjusted p-values for each test using the Benjamini 
and Hochberg (BH) method to control the false discovery rate 
(FDR). Log-transformed expression values were then utilized to 
identify DEGs, specifically focusing on upregulated genes 
meeting the criteria of an adjusted p-value< 0.05 and a logFC 
(fold change) > 2. This stringent approach allowed us to pinpoint 
genes exhibiting substantial upregulation in expression levels. 
Notably, our analysis identified a total of 250 genes as 
upregulated out of 3212 evaluated. These findings shed light on 
the molecular landscape of gene expression changes associated 
with the condition under study, providing valuable insights into 
potential biomarkers or therapeutic targets. The relationship 
between methylation and gene expression in lung 
adenocarcinoma (LUAD), shows an intersection analysis of 
differentially methylated genes (DMGs) and differentially 
expressed genes (DEGs) was conducted to identify genes 
exhibiting hypo-methylation and upregulation respectively, 

referred to as hypo-Up genes. Among the 2161 hypomethylated 
genes (DMGs) identified, 630 were observed to be upregulated 
(DEGs). This intersection analysis revealed a total of 29 genes as 
DMEGs, indicating simultaneous changes in methylation and 
expression levels associated with LUAD. The identified genes 
include COL1A1, PHLDA2, PPP1R1B, FA2H, SOX9, WNT7B, 
ATN1, GPRIN1, NUDT8, NPM3, CERCAM, CDH1, LOXL1, 
AP1S1, TIMELESS, LAD1, WDR18, MICALL2, SLC34A2, 
MANSC1, CMTM8, EXOSC4, SLC27A4, FAM50A, MRPL3, 
TMEM97, PACS1, SNAPIN, KRCC1.These findings provide 
insights into potential regulatory mechanisms underlying LUAD 
pathogenesis and may serve as valuable candidates for further 
investigation as biomarkers or therapeutic targets. The obtained 
29 potential Common DM-DE targets were transferred to 
STRING platform (https://string-db.org/) for PPI analysis and 
visualized Cytoscape Software for visualizing and MCODE tool 
in cytoscape to analysing Seed gene. There show three clusters 
and from the three COL1A1 was identified as the seed gene with 
MCODE Score of 2.0.   
 
Discussion: 
The integrative multi-omics strategy used in this work 
successfully identified numerous possible biomarkers in lung 
adenocarcinoma (LUAD) by combining DNA methylation and 
gene expression profiles. By focusing on hypomethylated and 
upregulated genes, the study emphasizes the importance of 
epigenetic dysregulation in LUAD progression. The significance 
of DNA methylation alterations in cancer has been well 
acknowledged since the early 2000s. Esteller found that 
abnormal DNA methylation patterns, such as hypermethylation 
and global hypomethylation, play critical roles in carcinogenesis 
by silencing tumor suppressor genes and activating oncogenes 
[3]. Our data confirm this idea by showing that several 
hypomethylated genes have increased expression levels in 
LUAD, implying that methylation loss leads to gene activation 
and may accelerate neoplastic processes. Furthermore, Baylin 
and Herman (2000) stressed that genetic and epigenetic changes 
interact to induce cancer progression [9]. This dual process is 
obvious in LUAD, where our research revealed extensive 
methylation changes in conjunction with large gene expression 
changes. Such integrated analysis enables the identification of 
genes whose dysregulation may not be detectable using single-
omics techniques, consistent with the multi-layered perspective 
advocated in early cancer epigenetic research.  
 
The analytical methodology used in this work is consistent with 
prior methodologies, such as those described by Wang et al. 
2020, who found that combining DNA methylation and gene 
expression data improves biomarker discovery in lung cancer 
[1]. This integrative technique not only improves the finding of 
biologically relevant targets, but it also helps to understand the 
regulatory mechanisms underlying LUAD. The identification of 
differentially methylated and differentially expressed genes 
(DMEGs) using rigorous computational analysis increases the 
biomarkers' potential therapeutic value. Early investigations by 
Esteller et al. (2001) stressed the relevance of genome-wide 
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methylation profiling in identifying cancer-associated epigenetic 
markers [10], a strategy that has been effectively applied to 
LUAD. The study's use of expression profiling adds to the body 
of evidence showing epigenetic instability is frequently 
associated to transcriptional activation or repression in cancer 
cells. Although this study focuses on biomarker identification, 
future research may look at therapeutic implications, such as 
drug repositioning and target validation. Previous research has 
shown that combining computational techniques with molecular 
docking can help find and assess novel medication candidates 
for cancer therapy [5]. Building on these approaches may 
increase the translational potential of the identified biomarkers. 
 
Conclusion: 

Integrating DNA methylation and gene expression data 
provides a powerful approach for identifying novel biomarkers 
in lung adenocarcinoma (LUAD), highlighting the role of 
epigenetic deregulation and uncovering genes potentially crucial 
for cancer progression and therapy resistance. These candidate 
biomarkers offer promising avenues for improved early 
detection, prognosis, and the development of precision medicine 
strategies tailored to the molecular profile of individual LUAD 
tumors. Further experimental and clinical validation is needed to 
confirm the functional significance and clinical utility of these 
biomarkers, paving the way for future advances in LUAD 
research and cancer epigenomics. 
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