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Abstract: 

The application of machine learning (ML) algorithms to routine hematological parameters for early prediction of bloodstream 
infections and to characterize the microbial and antimicrobial resistance (AMR) profile of culture-positive cases is of interest. A 
retrospective observational study conducted at AIIMS Kalyani between January 2023 and December 2024, in which blood culture 
results, AST profiles and 16 routine hematological parameters were collected. ML models including Logistic Regression, Decision 
Tree, Random Forest and SVM were developed using Python. ROC-AUC, accuracy, sensitivity and specificity were computed for 
model evaluation. Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus and Pseudomonas aeruginosa were the predominant 
isolates, with high resistance to cephalosporins and beta-lactam-beta-lactamase inhibitor combinations. The Random Forest model 
showed the highest predictive power (accuracy: 87%, AUC: 0.70) and key predictors included neutrophil count, CRP, and TLC.  The 
ML models offer promising support for early prediction of BSIs and, when coupled with continuous AMR surveillance, can facilitate 
rapid diagnosis and guide empirical antibiotic therapy, especially in low-resource settings. 
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Background: 
Bloodstream infections (BSIs) are among the most severe 
manifestations of infectious diseases, with the potential to 
rapidly progress to sepsis and septic shock, leading to significant 
morbidity and mortality worldwide [1]. Bloodstream infections 
represent a critical healthcare challenge, particularly in 
hospitalized and immunocompromised patients, where early 
diagnosis and timely administration of appropriate 
antimicrobial therapy are essential to reduce adverse clinical 
outcomes and mortality [2]. However, conventional diagnostic 
methods, primarily blood cultures, are often limited by delayed 
turnaround time, suboptimal sensitivity and the inability to 
detect fastidious organisms, especially in patients who have 
received prior empirical antibiotic therapy [3]. The epidemiology 
of BSIs has evolved considerably, with an increasing burden of 
multidrug-resistant (MDR) pathogens like Gram-negative 
bacteria such as Escherichia coli, Klebsiella pneumoniae and 
Pseudomonas aeruginosa have emerged as predominant causes, 
often exhibiting resistance to beta-lactams, fluoroquinolones, 
and aminoglycosides [4]. The alarming rise of carbapenem-
resistant Enterobacteriaceae (CRE) has further complicated the 
therapeutic landscape, necessitating a shift in clinical decision-
making toward predictive and precision-based diagnostics [5]. 
 
In this context, machine learning (ML) has shown promise as a 
powerful analytical tool capable of identifying patterns in large 
and complex datasets, as ML algorithms can be trained on 
routinely available clinical and laboratory parameters to assist in 
the early prediction of infectious states, including BSIs and by 
leveraging haematological indices, biochemical markers and 
vital signs, these models offer the potential to support diagnostic 
workflows even before microbiological confirmation [6]. Several 
studies have explored ML applications in infectious disease 
diagnostics and highlighted the integration of AI in healthcare, 
particularly its capacity to complement clinical intuition [7]. In 
the field of sepsis and BSI, ML models have demonstrated 
moderate to high sensitivity in identifying at-risk patients. 

Parameters such as neutrophil-to-lymphocyte ratio (NLR), C-
reactive protein (CRP), total leukocyte count (TLC) and 
procalcitonin have been frequently employed in ML frameworks 
to distinguish bacterial infections from non-infectious causes of 
systemic inflammation [8]. Despite growing interest, there is a 
dearth of studies utilizing ML in the Indian context, particularly 
in tertiary care settings with a high burden of AMR, highlighting 
a critical gap in understanding how predictive models perform 
when applied to real-world data from resource-constrained 
environments. There is a need to bridge that gap by combining 
routine hematological data, microbiological culture outcomes 
and ML modeling to build a predictive framework for 
bloodstream infections. Therefore, it is interest to identify the 
microbial spectrum and resistance patterns of culture-confirmed 
BSIs and to evaluate the performance of supervised ML models 
in predicting culture positivity. 
 
Methods:  

This retrospective observational study was conducted at the 
Department of Microbiology, All India Institute of Medical 
Sciences (AIIMS), Kalyani, over a period of two years from 
January 2023 to December 2024. The study was approved by the 
Institutional Ethics Committee (Ref. No. 
IEC/AIIMS/Kalyani/certificate/2024/368 dated 15th November 
2024). As the study did not involve any sample collection from 
the patients directly hence waiver of consent was obtained for 
the study. Patient identifiers were anonymized and 
confidentiality of all data was maintained throughout the 
analysis. Patients of all age groups who presented with clinical 
suspicion of bloodstream infection and underwent blood culture 
testing were included. Only the first positive culture episode per 
patient was considered to avoid duplication. Blood samples 
were collected aseptically and inoculated into BACT/ALERT FA 
Plus culture bottles (bioMérieux, France) and incubated in an 
automated blood culture system. Once flagged positive, 
subculture was performed on Blood agar and MacConkey agar. 
Pathogens were identified using standard biochemical tests and 
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the VITEK® 2 Compact system (bioMérieux, France). 
Antimicrobial susceptibility testing (AST) was conducted using 
the Kirby-Bauer disc diffusion method on Mueller Hinton Agar 
and minimum inhibitory concentrations (MICs) were 
determined for select isolates using broth microdilution as per 
CLSI 2023 and 2024 guidelines. Results were interpreted as 
susceptible, intermediate or resistant based on CLSI breakpoints. 
For ML modeling, demographic and laboratory data including 
total leukocyte count (TLC), differential counts, hemoglobin, 
hematocrit, platelets, CRP, and other routine parameters were 
retrieved from the hospital laboratory information system. Cases 
were labeled as 'positive' or 'negative' based on blood culture 
results. Data preprocessing included missing value imputation, 
normalization, and feature selection. ML models developed 
included Logistic Regression, Decision Tree, Random Forest, and 
Support Vector Machine (SVM), implemented using Python’s 
scikit-learn library. Model performance was evaluated using 
accuracy, sensitivity, specificity, precision, F1 score and the area 
under the receiver operating characteristic curve (ROC-AUC). 
Ten-fold cross-validation was employed to avoid overfitting. 
Feature importance was analyzed to determine the most 
influential parameters contributing to prediction. 
 

Results: 
A retrospective study was carried out in the Department of 
Microbiology at a tertiary care center in Eastern India, analyzing 
data from patients clinically suspected of bloodstream infections 
over a two-year period (January 1, 2023, to December 31, 2024). 
A total of 1626 patients suspected of blood stream infection were 
included in the study. The descriptive summary is given in 
Table 1. The 133 culture-positive isolates included 
Enterobacterales (E. coli, Klebsiella pneumoniae, Enterobacter spp.), 
enteric fever agents (Salmonella Typhi, S. Paratyphi A/B), non-
fermenting Gram-negative bacilli (Pseudomonas aeruginosa, 
Acinetobacter baumanii) and Staphylococcus aureus. Less commonly 
detected organisms included Stenotrophomonas maltophilia (8) 
Sphingomonas paucimobilis (5), Enterococcus spp. (5), Candida spp. 
(4), Aeromonas spp. (3), Serratia spp. (3), Burkholderia cepacia (3), 
Ochrobactrum spp. (3) and Ralstonia spp. (3). Rhizobactor spp. was 
found in 2 samples, while Streptococcus spp., Moraxella ovis, 
Escherichia hermanii, Chryseobacterium spp., Granulicatella elegans, 
Streptococcus pseudoporcinus, Commamonas spp., Elizabethkingia 
spp., Leuconostoc spp. and Gardenella spp. were each isolated once. 
Among the Enterobacterales group comprising Escherichia coli 
(24 isolates), Klebsiella pneumoniae (14) and Enterobacter spp. (2), 
notable variations were observed in antimicrobial susceptibility. 
E. coli exhibited the highest sensitivity to amikacin (83.33%), 
meropenem (79.16%) and piperacillin-tazobactam (75%), while 
ciprofloxacin and levofloxacin showed lower efficacy, with 
sensitivities of 33.33% and 45.83%, respectively.  
 
The enteric fever group, including S. Typhi (8 isolates), S. Paratyphi 
A (4) and S. Paratyphi B (1), demonstrated excellent susceptibility 
(100%) sensitive to third generation cephalosporins, 

carbapenems, chloramphenicol and cotrimoxazole. The 
resistance to fluoroquinolones was high 66.7%. The non-
fermenting Gram-negative bacilli, Pseudomonas aeruginosa (12 
isolates) and Acinetobacter baumannii (7), showed contrasting 
resistance patterns. Pseudomonas retained high sensitivity to 
carbapenems (91.66%) and piperacillin-tazobactam (83.33%) and 
aminoglycosides (91.66%), while fluoroquinolone sensitivity was 
notably lower (25%). In stark contrast, Acinetobacter 
demonstrated marked resistance, with sensitivities not 
exceeding 42.85% for any antibiotic. Most agents showed less 
than 30% efficacy with meropenem (42.85%) and 
aminoglycosides (28.57%). For Staphylococcus aureus (15 isolates), 
the highest susceptibility was observed with vancomycin and 
linezolid (100%), followed closely by doxycycline (86.66%). 
However, there was 46.6% methicillin Resistant Staphylococcus 
aureus (MRSA) and significant resistance to fluoroquinolones 
(ciprofloxacin 86.7%, levofloxacin 66.7%) and co-trimoxazole 
(53.3%). Machine learning performance was evaluated using 
eight classifiers. The Random Forest model achieved the highest 
accuracy (87.6%) and AUC (0.70), with a sensitivity of 36.4% and 
specificity of 98.1% (Table 2 and Figure 1). Of 260 patients used 
for ML modeling, 44 showed culture positivity and 216 were 
negative. The Random Forest, LDA and Logistic Regression 
models performed reasonably well; however, ensemble methods 
provided more balanced accuracy and NPV for screening use as 
shown in Table 2. 
 
Table 1: Summary descriptive table 

    ALL   N   

    N=1626         

Age 38.2 (23.8)  996  
Gender:              1626 
Female 709 (43.6%)       
Male 917 (56.4%)       
Sample collection:              1626 
ICU  11 (0.68%)       
IPD 1338 (82.3%)      
OPD 277 (17.0%)       
Report:              1626 
Contaminant 137 (8.43%)       
Growth 133 (8.18%)       
No growth 1356 (83.4%)      
TLC 8.93 (6.82)  1100 
Neutrophil 63.4 (15.3)  1093 
Lymphocyte 25.6 (13.0)  1092 
Platelet  252 (151)   1099 
Hb 10.5 (4.81)  1099 
Total bilirubin 1.38 (3.82)  607  
Direct bilirubin 0.85 (2.97)  607  
AST  106 (569)   610  
ALT  73.7 (203)  610  
ALP  156 (180)   604  
Urea 38.7 (51.8)  573  
Creatinine 1.45 (5.65)  584  
CRP 57.4 (80.6)  514  
ESR 53.5 (42.5)  103  
Procalcitonin 4.84 (11.9)   23  
Outcome:              1626 
Death  57 (3.51%)       
Survived 1569 (96.5%)      
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Table 2: Performance of the different Machine learning models 

 
Model 

Train Accuracy Test Accuracy Test Sensitivity Test Specificity Test PPV Test NPV Test AUC 

Linear Discriminant Analysis (lda) 0.753086 0.738462 0.272727 0.833333 0.250000 0.849057 0.717172 
Random Forest (rf) 0.983539 0.876923 0.363636 0.981481 0.800000 0.883333 0.701178 
Extra Trees (et) 0.967078 0.830769 0.090909 0.981481 0.500000 0.841270 0.684343 
Logistic Regression (lr) 0.769547 0.738462 0.272727 0.833333 0.250000 0.849057 0.673401 
Support Vector Machine (svm) 0.761317 0.738462 0.454545 0.796296 0.312500 0.877551 0.671717 
K-Nearest Neighbors (knn) 0.983539 0.723077 0.363636 0.796296 0.266667 0.860000 0.606902 
Decision Tree (dt) 0.983539 0.723077 0.363636 0.796296 0.266667 0.860000 0.579966 
Naive Bayes (nb) 0.563786 0.338462 0.727273 0.259259 0.166667 0.823529 0.510101 

 

Figure 1: ROC curve and confusion matrix for random forest 
 
Discussion: 

Several studies worldwide have explored the application of 
Machine Learning (ML) to predict bloodstream infections and 
related outcomes, with promising results across diverse clinical 
settings. These studies have utilized a range of input variables-
from routine laboratory parameters to complex electronic health 
record (EHR) datasets-to improve the early detection of 
bacteremia and sepsis. Despite this growing body of evidence, 
there are only few published studies from India which have 
evaluated the role of ML in predicting positive blood cultures or 
bloodstream infections. Given India’s high burden of 
antimicrobial resistance (AMR) and variability in healthcare 
infrastructure, locally derived predictive models are crucial to 
ensure clinical relevance and implementation feasibility. The 
studies summarized below provide valuable insights and a 
foundation for developing context-specific ML tools for 
septicemia. A study by Giannini et al. developed a machine 
learning algorithm using electronic health record data including 
digital patient information i.e., vitals, laboratory parameters and 
clinical notes to predict severe sepsis and septic shock. The 
algorithm showed 76% sensitivity and 82% specificity [9]. Xu et 
al. from China, used real-world data from the Medical 
Information Mart for Intensive Care IV (MIMIC-IV) database to 
cluster 2,339 sepsis patients based on blood culture results. 
Machine learning analysis revealed distinct survival and severity 

patterns, suggesting innovative prognostic and therapeutic 
strategies. Using unsupervised K-means clustering based on 
blood culture profiles, they identified five distinct bacterial 
infection clusters. Each cluster showed significant variation in 
disease severity (measured by GCS, SOFA, SAPSII and SIRS 
scores) and survival outcomes. The 28-day survival differences 
were statistically significant (p = 4.4e-5), while the 7-day survival 
curves were less differentiated [10]. Lien et al. Taiwan and 
developed a machine learning model using only complete blood 
count and differential leukocyte count data to predict 
bacteremia. The model achieved an AUC of 0.802, 
outperforming CRP and procalcitonin tests, offering rapid, cost-
effective and comparable prognostic capability for clinical use 
[11]. Bedoya et al. at Duke University developed a novel deep 
learning model - Multi-output Gaussian Process coupled with a 
Recurrent Neural Network (MGP – RNN) to detect sepsis early 
using electronic health records. Validated on over 80,000 
encounters, it achieved an AUROC of 0.88 and predicted sepsis a 
median of 5 hours in advance, outperforming clinical scores like 
SIRS, qSOFA, NEWS and traditional machine learning models 
[12]. 
 
Dhungana et al. at Mayo Clinic, USA developed a supervised 
machine learning-based computable phenotype to identify 
sepsis and septic shock using ICU electronic medical records. 
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Based on SOFA scores, cultures and lactate and vasopressor use, 
it achieved 100% sensitivity and specificity in validation, offering 
a fast, reliable alternative to manual chart review [13]. Chang et 
al. Taiwan and developed a machine learning model using 
complete blood count (CBC), differential count (DC) and cell 
population data (CPD) to predict bacteremia. Validated across 
three hospitals, the CatBoost model achieved AUROCs up to 
0.847. Key features included lymphocyte conductivity, 
neutrophil-to-lymphocyte ratio and nucleated RBCs [14]. Stocker 
et al. Switzerland, conducted a secondary analysis of the 
Neonatal Procalcitonin Intervention Study (NeoPInS) to develop 
a machine learning model for predicting neonatal early-onset 
sepsis. Using a random forest algorithm on data from 1,685 
neonates across multiple international centers, they found that 
biomarkers particularly CRP and white blood cell count (WBC) 
were far more predictive than clinical signs or risk factors. The 
model achieved an AUROC of 83.4% and an AUPRC of 28.4%, 
offering a potential tool to reduce unnecessary antibiotic use in 
neonates [15]. Mahmoud et al. Riyadh and developed machine 
learning models to predict bacteremia using 21,073 blood 
cultures. Neural networks achieved 89% specificity but low 
sensitivity. Key predictors included central line presence, 
hospital stay >16 days and lactic acid >2 mmol/L. SIRS and 
qSOFA showed limited utility [16]. 
 
Kainth et al. conducted a systematic review evaluating Machine 
Learning (ML) models for diagnosing neonatal sepsis. Screening 
5008 records, they included 19 studies (15,984 participants) 
involving 76 ML models predominantly using random forest 
algorithms. Most models incorporated birth weight and 
gestational age as predictors, though none underwent external 
validation. Pooled sensitivity and specificity were 0.87 and 0.89, 
respectively, with an AUC of 0.94, indicating strong diagnostic 
performance. However, risk of bias was high in 18 studies and 
most were based in high- or upper-middle-income countries 
[17]. Vijayakumar et al. developed and validated an explainable 
AI system for early prediction of blood culture positivity in 
neutropenic leukemia patients undergoing chemotherapy (N = 
110). Recognizing the critical delay in traditional blood culture 
results and the risks of broad-spectrum antibiotic overuse, the 
model utilized readily available hematological and clinical 
parameters to predict bacterial growth 2–5 days in advance. The 
best-performing model achieved an accuracy and F1 score of 
78%, while predictions specific to gram-negative bacteria 
reached 63% for both metrics [18]. Zhang and colleagues 
developed a machine learning model using routine laboratory 
parameters to distinguish between Gram-positive and Gram-
negative bacteremia, achieving the best performance with a 
Random Forest classifier (AUC = 0.768, sensitivity = 75.20%, 
specificity = 63.79%) [19]. Murri et al. developed a machine 
learning-based model using multivariate logistic regression to 
predict the risk of hospital-acquired bloodstream infections, 
achieving a validation AUROC of 0.74 and enabling 
classification into low-, medium-, and high-risk groups. The 
model demonstrated strong negative predictive value (NPV = 
0.82), suggesting its utility in antibiotic stewardship by 

potentially reducing unnecessary antibiotic use in up to 31.1% of 
low-risk patients [20]. The current study demonstrated that 
machine learning algorithms, particularly Random Forest, can 
offer valuable support in the early prediction of bloodstream 
infections (BSIs) using routine hematological parameters. The 
overall model performance with accuracy of 87.6%, AUC of 0.70 
and a specificity of 98.1% highlights the potential utility of ML in 
diagnostic triage. However, sensitivity was modest (36.4%), 
reflecting the challenge of capturing subtle early infection 
signals, especially with limited positive cases. Key predictive 
features, including neutrophil count, CRP and total leukocyte 
count, align with established inflammatory markers in BSIs.  
 
The antimicrobial resistance patterns identified were concerning. 
While E. coli and Pseudomonas aeruginosa retained some 
sensitivity to carbapenems and aminoglycosides, widespread 
resistance to cephalosporins and beta-lactamase inhibitors 
underlines the urgency for stewardship efforts. Notably, 
Acinetobacter exhibited high resistance across all antibiotics. The 
integration of microbial profiling and ML modeling in this study 
provides a dual benefit: real-time risk prediction and enhanced 
antimicrobial guidance. This is particularly relevant in low-
resource, high-AMR settings like India, where laboratory 
confirmation is often delayed. The model offers a promising step 
toward precision diagnostics tailored to regional epidemiology. 
This study has several limitations. First, it is a single-center, 
retrospective analysis, limiting generalizability. Second, the 
dataset had class imbalance, with relatively few culture-positive 
cases having complete dataset, potentially affecting model 
sensitivity. Third, the study excluded patients with incomplete 
data, which may introduce selection bias. Fourth, performance 
metrics like sensitivity were modest, which could hinder clinical 
deployment in isolation. Finally, the model was not externally 
validated on independent datasets, making its robustness across 
different populations uncertain. Further multicenter, prospective 
studies with larger datasets and external validation are 
necessary to confirm these findings and improve model 
performance. 
 
Conclusion: 

The feasibility of using machine learning models, especially 
Random Forest, to predict bloodstream infections based on 
routine hematological parameters is shown. Despite modest 
sensitivity, the high specificity and reasonable accuracy suggest 
its potential utility as a screening tool to aid early clinical 
decisions. When integrated with microbiological data and 
antimicrobial resistance profiles, ML-driven prediction can 
enhance empirical antibiotic selection and improve patient 
outcomes. Broader validation and inclusion of clinical features 
could improve sensitivity and support its adoption in real-world 
settings. 
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