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Abstract: 
Diagnostic biomarker for Ebola Virus Disease (EVD) and its overlapping diseases, which include COVID-19, monkey pox, AIDS and 
uveitis, is of interest. The gene-disease association network was built by using human microarray datasets from the GEO database. 
The comparison based on Jaccard's similarity index showed 27 intersected differentially expressed genes (DEGs), with AIDS having 
the highest genomic association with EVD. Gene-disease interaction analysis revealed Metastasis-associated lung adenocarcinoma 
transcript-1 (MALAT1) and histone cluster 1, H2bc (HIST1H2BC) as the most relevant diagnostic biomarkers. Thus, the dg IDB 
database provided potential for drug repurposing, targeted therapy and broad-spectrum antiviral applications. 
 
Keywords: Ebola virus disease; connecting diagnostic biomarker; differentially expressed gens; overlapping disease; network 
biology. 

 
Background: 
The infection of the Ebola virus leads to an acute and life-
threatening condition in humans, which is marked by 
hemorrhagic fever, coagulation or bleeding, an increased 
inflammatory reaction, hypotensive shock and frequently, 
fatality [1]. The Ebola virus belongs to the Filoviridae family and 
comprises six virus species within the Ebolavirus genus, which 
are Zaire, Sudan, Tai Forest (formerly known as Cote d'Ivoire), 
Reston, Bundibugyo and Zaire ebola virus Bombali [2, 3]. Of the 
six identified species, Zaire ebolavirus shows the highest rates of 
case fatality in human populations. Zaire ebola virus was 
responsible for the Ebola virus outbreak that occurred in West 
Africa from 2014 to 2016 and this epidemic stands as the most 
extensive in history, encompassing in excess of 28,000 
documented cases and a death toll exceeding 11,000 individuals 
[4]. Apart from the outbreak in Western Africa, the outbreak in 
the provinces of Ituri, Nord-Kivu and Sud-Kivu in the 
Democratic Republic of the Congo, is the second largest 
outbreak in terms of the number of cases and fatalities, with 
3,418 infections and 2240 deaths at the time of 2018- 2020 [5, 6]. 
The present literature suggests that fever, muscle-joint pain, 
fatigue, uveitis eye inflammation and respiratory difficulties, are 
the most commonly reported symptoms associated with EVD, 
COVID-19, AIDS and Monkey Pox (MPOX) viral diseases. 
Inflammation is a prominent characteristic that arises during or 
subsequent to various viral diseases, including but not limited to 
EVD, COVID-19, MPOX and AIDS. There appears to be a 
significant correlation between the ocular system and the 
complications of immune-mediated or systemic diseases. Due to 
its immune-privileged nature, the Uvea, which is one of the most 
delicate parts of the human eye, is particularly susceptible to 
direct infection or immune-mediated complications. This 
vulnerability is due to the eye's high level of sensitivity, making 
it a crucial organ in the human body. Uveitis can lead to 

enduring morbidity and reduced quality of life for patients. 
Nevertheless, the intricate interaction between EVD and 
different ODs remains incompletely comprehended [7-14]. 
Overlapping diseases are medical conditions which coexist and 
share clinical features/symptoms of at least two or more widely 
recognised diseases [15]. The genetic correlation between two 
diseases or infections is established when they share common 
dysregulated genes [16]. The study of gene-disease interaction, 
specifically in the context of infectome or diseasome network, 
facilitates the identification of novel interactions that can 
elucidate the genomic association or molecular mechanisms of 
correlated viral diseases [17]. The presence of ODs has been 
found to significantly increase the risk of morbidity and 
mortality due to associated infections and diseases [18]. It is 
obvious that the epidemiological transition results in a double 
disease load in the affected population and is becoming an 
important health concern globally. The commonality of EVD and 
its ODs raises pharmacological concerns and presents a 
significant barrier for co-management and treatment, indicating 
the need for an innovative shift, highlighting common 
biomarkers and treatment targets rather than stand-alone 
approaches emphasized on particular and discrete diseases. 
 
In a recent study, Gysi et al. used a network-medicine and drug-
repurposing strategy to find potential re-pursuable drugs for the 
treatment of COVID-19 [19]. In their study, Sakle et al. 
implemented a network pharmacology-based methodology to 
demonstrate the multifaceted pharmacological properties of 
Caesalpinia pulcherima (CP) in the context of breast cancer 
treatment. The findings of their investigation provide valuable 
insights into the potential clinical applications of CP as a multi-
target herb [20]. Azuaje, et al. have contributed to the 
understanding of the cardiovascular impacts of non-
cardiovascular medications through the integration of various 
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drug and protein interaction data sources to construct the drug-
target interactome network for myocardial infarction [21]. Zhu et 
al. suggested that Gene-Disease interaction within a network 
offers a novel perspective to find molecular biomarkers for 
comorbidity of viral infections [22]. Omit et al. implemented a 
network based Gene-Disease interaction approach to discover 
the genomic associations and molecular mechanisms for COVID-
19 associated diseases [23]. Kim et al. proposed that the 
proximity between drugs and diseases within a network could 
provide a unique approach to understanding the therapeutic 
combination therapies and drug repositioning strategies [24]. 
The theoretical framework and methodological tools of network 
analysis are ideal for investigating and comprehending the 
structural and relational dimensions of human health and 
diseases [25]. The application of network-based analyses is 
becoming increasingly significant in identifying genes associated 
with disease susceptibility and their correlations with various 
diseases. The aforementioned studies have contributed to the 
advancement of our knowledge regarding drug targets and their 
impacts. Additionally, they have proposed novel drug targets, 
therapeutics and therapeutic management strategies for severe 
illnesses [26]. The study of networks is playing an important part 
in the advancement of systems pharmacology. The potential 
existence of mechanisms and a causal relationship between EVD 
and the ODs requires further substantiation. In order to gain a 
more comprehensive understanding of the underlying 
mechanisms, the present research was proposed to construct a 
gene-disease interaction network (bipartite graph) by using the 
intersecting of EVD with other ODs. The gene-disease network 
has been examined to find out the EVD related genes that are 
also associated with chosen ODs and to establish the relationship 
between genes and diseases, in which a minimum of one gene 
that is significantly up regulated or down-regulated should be 
common in EVD and its ODs, or within the ODs. Next, the 
Jaccard similarity index was used to determine the predominant 

overlapping disease within the chosen set of ODs. Protein-
protein interaction network of EVD and ODs was also build 
using differentially expressed genes of EVD and ODs [27]. In 
order to assess the molecular mechanisms, we performed 
structural and functional enrichment and pathway analysis. Ten 
biomarker hub genes were identified based on their degree of 
influence, as elaborated in the methods and analyses section. 
Therefore, it is of interest to describe novel findings that shed 
further light on the biological basis of therapeutic responses and 
the development of targeted and multidrug treatments for EVD 
and its ODs. 
 
Methodology: 
The simplified workflow of this study is shown in Figure 1. 
 
The selection process of microarray datasets related to EVD 
and its ODs: 

The GEO (Gene Expression Omnibus) from NCBI is a publicly 
available repository that comprises gene expression profiles [28]. 
The study utilised five microarray datasets, namely GSE93861 
[29], GSE150819 [30], GSE9927 [31], GSE36854 [32] and GSE66936 
[33] for EVD, COVID-19, AIDS, MPOX and Uveitis respectively 
which were obtained from the GEO datasets repository [34]. The 
datasets utilised in our study were chosen through a rigorous 
process of inclusion and exclusion criteria, which specifically 
targeted (i) studies involving both human subjects diagnosed 
with disease and healthy control groups. (ii) Assessment of 
expression of genes profiling. (iii) The inclusion criteria for 
studies involve selecting those with a minimum of six control 
and six experimental samples. (iv) The datasets were excluded if 
the studies did not include a healthy control group. (v) The 
datasets from other organisms were omitted. All datasets and 
references that met the aforementioned criteria underwent 
manual screening. As this study solely relies on bioinformatics 
analysis, ethical approval was considered unnecessary.  

 
Table 1: Dataset description for EVD & ODs 

Disease Name GSE Number Organism Sample Type No. of Sample (Control / Disease) Platform ID 

EVD GSE93861 Homo Sapiens Peripheral Blood 79 samples (30/49) GPL6480 
COVID-19 GSE150819 Homo Sapiens Bronchi 18 samples (09/09) GPL18573 
MPOX GSE36854 Homo Sapiens HeLa 08 samples (02/06) GPL4133 
AIDS GSE9927 Homo Sapiens CD4+ T-cells 20 samples (09/11) GPL570 
Uveitis GSE66936 Homo Sapiens Human Peripheral Monocytes 21 samples (16/05) GPL570 

 
Table 2: Identified DEGs along with upregulated, down-regulated, & overlapped DEGs for EVD & ODs. 

Disease Name GSE Number Differentially Expressed Genes Up regulated Down-regulated Overlapping DEGs with  Ebola   

          Upregulated Down-regulated 
EVD GSE93861 1454 681 773 - - 
COVID-19 GSE150819 1396 831 565 53 25 
MPOX GSE36854 947 472 475 12 52 
AIDS GSE9927 1024 432 592 24 63 
Uveitis GSE66936 797 383 414 23 30 

 
Table 3: Calculation of the Jaccard’s Similarity Index 

ODs Name                                            
 

                +             Jaccard’s similarity index 
        

        
 

COVID-19 
MPOX 
AIDS 
Uveitis 

         
   

 
 

 

 
 

 

831 
472 
432 
383 

565 
475 
592 
414 

1396 
947 
1024 
797 

78 
64 
87 
53 

2772 
2337 
2391 
2198 

78/2772=0.028 
64/2337=0.027 
87/2391=0.036 
53/2198=0.024  681 773 1454 
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Figure 1: The methodological workflow implemented in this study 
 
Finding of differentially expressed genes of EVD and its ODs: 
The identification of DEGs was carried out through a 
comparison between normal and disease samples within each 
GEO dataset. The DEGs were found via the utilisation of the 
online programme GEO2R [35], which relies on the limma R 
package [36]. The main cut off parameters selected for 
interpreting the results were a "P value<0.05" and "|logFC|≥1". 
Important DEGs were identified for each category, namely EVD, 
COVID-19, AIDS, MPOX and Uveitis, by applying a cut-off 
criterion to each dataset. Only those DEGs that met the cut-off 
criteria in each dataset were included in the analysis. The list of 
interconnecting DEGs was obtained through utilisation of Venny 
2.1.0, an online computational tool that facilitates the calculation 
of intersections among listed elements (Figure 2). 
 
EVD and its ODs linkage: 

By employing community prospered standard and topological 
methodologies, we developed bipartite networks or graphs to 
represent the relationship between genes and diseases. The 
nodes in the network were either genes (represented by round 
shapes) or diseases (represented by octagonal shapes). Through 
this approach, we were able to confirm the correlation between 
EVD and its ODs. In order to take part in the network and 
establish an association or connection, it is necessary for the 
diseases of interest, namely EVD and its ODs, to have one or 
more significant DEGs in common. The present study involved 

the consideration of M as a set of maladies and D as a set of 
DEGs. The bipartite graph or network was established based on 
the affiliation of gene g ∈ D with malady m ∈ M. If DEGs DA and 
DB exhibit a gradual correlation with maladies MA and MB, 

respectively, the duplicated shared DEGs (    
 

) for both 

upregulated and down-regulated genes in the maladies can be 
expressed mathematically as stated below: 

                                                                                  
 

            

[1] The identification of common close neighbours and their in
teractions are achieved by means of the computation of the 
edge score (E) for every pair of nodes, using the Jaccard’s 
similarity index [37, 38]. 

                                                                              
        

        
                                                                           

[2] The sets D and E represent the nodes and edges, respective
ly. In the context of networks or bipartite graphs, co-
occurrence refers to the quantity of genes that are shared. 

 
Protein–Protein interaction network construction of EVD and 
its ODs: 

The study analysed the interaction between DEGs at the protein 
level using protein-protein interaction data from the STRING 
database [39]. The PPI network included 150 nodes in the 1st and 
2nd shell interactors, ensuring a greater number of seed genes 
were included. Cytoscape V3.10.2 [40] was used for visualizing 
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the network. The properties mentioned below were analysed to 
find out significant characteristic of the constructed PPI network: 
 

[1] Degree distribution: The degree distribution is the 
probability of a randomly selected node having a specific 
degree, expressed as a proportion of the total network 
node count [41]. 

                       
  

 
                

                                                   
[2] Clustering co-efficient: The Clustering coefficient C(k) 

measures the inherent clustering tendency of nodes in a 
network, assessing the strength of internal connectivity 
among nodes' neighbourhoods. It is calculated by 
comparing the number of triangular motifs in the network 
[42-43].                                                     

                          
   

        
                

                                           
[3] Neighbourhood connectivity: The average connectivity 

determined by the nearest neighbours of a node with 
degree k is denoted by C_N (k), which is also known as the 
node neighbourhood connectivity [44]. The mathematical 
expression of is as follows: 

                    
  

 

 
                                                  

Where, P (q k) is the conditional probability. 
 

[4] Betweenness centrality: (CB (v)) is the proportion of 
shortest-path flow from nodes i to j, indicating a node's 
potential for network information dissemination and signal 
processing regulation [45].                                       

                                                      

                              
[5] Closeness centrality: Closeness centrality (CC) measures 

the shortest path distances between a node and all other 
connected nodes, indicating the rate of information spread 
in a network. The clustering coefficient (C_C) is 
determined by dividing the total number of nodes by the 
total geodesic path lengths [46].   

                   
 

      
                                                        

 
Identification and analysis of sub-networks/modules and hub 
genes: 
The study used the MCODE plug-in [47] in Cytoscape software 
to identify subnetwork/modules, with clustering parameters 
such as degree cut-off, node score, k-core value and maximum 
depth. Top 5 modules were selected based on cluster scores 
greater than 6 and Centi Sca Pe [48] was used to find inter 
modular hub genes. From each module only top 10 genes having 
highest score on the basis of their degree centrality were picked 
for the purpose of identifying significant and strong candidate 
genes. Furthermore, we calculated hub genes in the primary 
network through cytohubba [49]. 
 
The functional enrichment and pathway analysis: 
The present study employed The Database for Annotation, Visua
lisation and Integrated Discovery (DAVID) and the g-Profiler 

tool to derive biological significance from extensive gene lists 
[50, 51]. This was done to conduct comprehensive gene term 
enrichment and pathway enrichment analysis of the target genes 
[52]. Statistically significant functions and pathways were chosen 
based on an adjusted Benjamini P-value threshold of less than 
0.01. 
 
Overlapping diseases interlinkage analysis: 
The interconnections among the chosen ODs were also investigat
ed. In this study, we looked over the dysregulated genes or 
DEGs of ODs associated with EVD. The identification of 
overlapped linking DEGs was carried out by applying Equations 
(2) and (3). Additionally, the gene-ODs interconnection network 
was constructed among the ODs themselves. Furthermore, a 
comprehensive search was conducted on globally published 
scientific literature to investigate the interrelationships between 
the chosen ODs and their impact on the progression and severity 
of EVD. 
 
Drug-target interactions: 
In order to ascertain the interactions between drugs and their tar
gets, we incorporated the DGIdb database [53] (www.dgidb.org)
. In this study, a total of 27 genes that serve as linking genes 
were subsequently mapped onto the Drug- Gene Interaction 
database (DGIdb). The purpose of the mapping was to ascertain 
more effective pharmacological options for genes associated 
with EVD and its ODs. The Cytoscape software was utilised to 
visualise the complex of drug-gene interactions. 
 

 
Figure 2: Venn diagram illustrating the number of shared genes 
between EVD and its ODs. (A) Association between EVD and 
ODs. (B). Overall disease gene association among the EVD and 
ODs. 
 

http://www.dgidb.org/
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Figure 3 (a): Gene-disease association network for the up-
regulated shared DEGs. Green color nodes are shared between 
EVD and COVID-19, pink color nodes are shared between EVD 
and MPOX, lavender color nodes are shared between EVD and 
AIDS, blue color nodes are shared between EVD and Uveitis, 
Shared pattern of orange color nodes between EVD and several 
ODs. The nodes for disease are represented through octagonal 
shape and nodes for DEGs are shown through round shape. The 
edges for links show the relationship between the diseases and 
the DEGs. 
 
Results: 

Table 1 presents the detail of the datasets related to the 
microarray series utilised in this research. Significant 
differentially expressed genes (DEGs) were identified based on 
satisfying the cut-off criteria of "P-value < 0.05" and "|logFC|≥ 1" 
in every single series. Only DEGs satisfying these criteria were 
included in the analysis. The adjusted p-value for various 
analyses was not utilised in our study. Instead, we employed a 
p-value cut-off of less than 0.05 to identify the largest number of 
differentially expressed genes (DEGs) associated with EVD and 
overlapping diseases. Subsequently, we proceeded with the 
construction of the network. The study identified a total of 1454 
genes that exhibited differential expression in EVD. Among 
these genes, 681 were observed to be upregulated while 773 
were observed to be down-regulated. In the case of COVID-19, 
we discovered 1396 DEGs, 831 of which were upregulated and 
565 of which were down-regulated. We obtained a total of 947 
DEGs for MPOX, of which 472 exhibited upregulation and the 
remaining 475 indicated down regulation. We found 1024 DEGs 
in AIDS, of which 432 were upregulated and 592 were down-
regulated. Similarly, 797 genes were differentially expressed in 
Uveitis, including 383 upregulated DEGs and 414 down-
regulated DEGs. The above-mentioned genes were utilised in the 

construction of the protein-protein interaction (PPI) network, 
which facilitated a comprehensive understanding of the 
intermolecular interactions between proteins in EVD and its 
overlapping diseases. Table 2 shows a summary of the DEGs.  In 
order to establish a relationship, it is necessary for there to be at 
least one shared gene between the two illnesses.  
 

 
Figure 5: Primary PPI Network and its five important modules 

 
Cross-comparative analyses were conducted to find shared 
DEGs between EVD and chosen ODs. The shared DEGs were 
determined to have a direct effect on the severity of EVD. Our 
study revealed that EVD has a total of 78 DEGs (53 upregulated 
and 25 down-regulated) that are shared with COVID-19, 64 
DEGs (12 upregulated and 52 down-regulated) that are shared 
with MPOX, 87 DEGs (24 upregulated and 63 down-regulated) 
that are shared with AIDS and 53 DEGs (23 upregulated and 30 
down-regulated) that are shared with Uveitis. Figure 3(a) 
demonstrates a total of 47 adjacent DEGs that are upregulated 
and shared exclusively between EVD and COVID-19. These 
DEGs are in close proximity to each other. There are an 
additional 6 DEGs that are commonly shared between EVD and 
COVID-19, along with other ODs. Likewise, there exists a set of 
12 closely adjacent DEGs between MPOX and EVD. There are 19 
DEGs that are commonly shared between AIDS and EVD. 
Additionally, there are 5 DEGs that are shared between EVD, 
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AIDS and other ODs. The study demonstrated that there are 18 
DEGs that are located next to each other in both EVD and 
Uveitis. Additionally, there are 5 DEGs that are located in 
between Uveitis, EVD and other conditions. Among the down-
regulated shared DEGs, there are 19 adjacent DEGs that are 
exclusively common between COVID-19 and EVD. Additionally, 
6 DEGs are found between EVD and other conditions, including 
COVID-19. There are 43 DEGs that are shared between MPOX 
and EVD. Additionally, there are 9 more DEGs that are common 
between EVD, MPOX and other ODs, as illustrated in Figure 

3(b). There are 49 DEGs that are shared between EVD and AIDS 
and an additional 14 DEGs that are shared between AIDS and 
other conditions associated with EVD. There are a total of 20 
DEGs that are located next to each other and are common to 
both EVD and Uveitis. Additionally, there are 10 other DEGs 
that are common to EVD, Uveitis and other conditions.  
 

 
Figure: 3(b) Gene disease association network for the down-
regulated shared DEGs. Green colour nodes are shared between 
EVD and AIDS, pink colour nodes are shared between EVD and 
Uveitis, lavender colour nodes are shared between EVD and 
COVID-19 and blue colour nodes are shared between EVD and 
MPOX, Shared pattern of orange colour nodes between EVD and 
several ODs. 
 
The Jaccard similarity index was determined using the DEGs of 
EVD and ODs. The resulting values were 0.028 for EVD and 
COVID-19, 0.027 for EVD and MPOX, 0.033 for EVD and AIDS 
and 0.024 for EVD and Uveitis. Neighbourhood similarity 
(Jaccard's similarity index) is a viable metrics for quantifying the 
interaction between two nodes [54]. There is a positive 
correlation between the neighbourhood similarity index of 
adjacent nodes and the level of interaction between the two 

nodes [55]. Out of the four ODs, AIDS demonstrated the highest 
similarity score. Table 3 presents the computation of the Jaccard 
similarity index, which utilises the DEGs associated with EVD 
and its ODs. Figure 2 displays the EVD and ODs association 
networks in order to demonstrate their vital relationship. The 
networks utilise frequent up and down-regulated DEGs to 
establish a connection between the selected ODs and EVD. The 
construction of the protein-protein interaction network involved 
the utilisation of overlapping DEGs that were shared among 
COVID-19, MPOX, AIDS and Uveitis. As a result, to make this 
network we took a total of 282 DEGs. Our objective was to create 
a network that includes the majority of the shared genes within 
the same network while ensuring that the network's clustering 
coefficient is greater than 0.5, a clustering coefficient greater than 
0.5 indicates that the network and its genes are tightly clustered 
together. The primary network comprised of 606 nodes and 
16,346 edges. In this context, the nodes represent proteins and 
the edges represent their interactions. Protein-protein 
interactions can be effectively studied by representing them as 
networks using graph theory. Subsequently, the topological 
properties of the network were determined. 
 

 
Figure 7: Interlinkage association network of ODs relating the 
ODs together through the linking DEGs where the octagonal-
shaped nodes are the ODs, while the round-shaped nodes are 
the identified significant linking DEGs. Pink nodes connected 
AIDS and COVID-19; green nodes connected MPOX and Uveitis; 
yellow nodes connected AIDS and MPOX; grey nodes connected 
COVID-19 and Uveitis and lavender colour nodes connected 
AIDS with Uveitis. The relatively large cyan colour nodes 
interconnected more than 3 ODs. 
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Figure 8: Representation of the number of interacting drugs with 
linking DEGs 
 
The study found that the degree distributions P (k), average 
clustering coefficient C (k) and neighbourhood connectivity CN 
(k) demonstrate the fractal characteristics of the network. This 
indicates that the network possesses a self-organizing property, 
whereby the nodes retain their nature at different levels, rather 
than adhering to a centrality-lethality control system, meaning 
that removing one or more hubs does not result in network 
breakdown. The analysis of the network behaviour revealed that 
it complied with a hierarchical scale-free network, with all of its 
topological properties conforming to power-law distributions 
[56]. The standard statistical fitting method proposed by Clauset 
et al. was utilised to execute power-law fitting on the data points 
pertaining to the topological properties [57]. The negative values 
observed for P (k) and C (k) suggest that the network adheres to 
a hierarchical pattern. However, the positive value of CN (k) 
indicates that the network exhibits assortative mixing, which 
recognises the presence of clusters or "rich clubs" that regulate 
the network. The utilisation of network centrality measurements, 
specifically CB (k) and CC (k), serves to illustrate the 
propagation of information within a network and predict the 
nodes that hold the greatest influence (Figure 4). The PPI 
network consisting of seed genes was analysed using MCODE, 
resulting in the generation of 15 subnetworks or modules. 
Among the 15 modules, 10 required a degree cut-off value of 2 
or higher, while 5 modules required a cluster cut-off score of 6 or 
higher. A total of 184 genes were identified in the top 5 
subnetworks/modules, which were generated based on the 
density of the interactions. Next, we attempted to pare down a 
selection of inter-modular hub genes by utilising the degree 
centrality method. This involved submitting the 606 genes to the 
CentiScaPe plugin.  The five most significant modules (Refer to 
Figure 5) contained a total of ten hub genes within each module. 
These hub genes were selected based on their highest degree 
centrality within their respective modules. Furthermore, through 
assessment of the PPI network that was obtained from the 
intersecting DEGs, we have successfully pinpointed 10 

significant hub genes. This was accomplished by utilising the 
cytohubba plug-in and assessing the degree centrality of each 
gene. The hub genes that we have found are ranked based on 
their degrees, with TP53 having the highest degree of 159, 
followed by RPS27A with a degree of 148, MYC with a degree of 
144, HSP90AA1 with a degree of 114, CDK2 with a degree of 
111, ATM with a degree of 110, EP300 with a degree of 110, 
CCNA2 with a degree of 109, CCNB1 with a degree of 108 and 
CCND1 with a degree of 103. Using the DAVID functional 
annotation tool and g-Profiler tool, we found numerous 
molecular functions, biological processes and cellular 
components, as well as KEGG pathways [58], in which the 
candidate genes for EVD and ODs are considerably enriched, as 
shown in figure. By analysing the MF, the majority of the 
candidate genes were identified to be enriched in ubiquitin 
protein ligase binding, activating transcription factor binding, 
cyclin−dependent protein serine/threonine kinase regulator 
activity, p53 binding, protein kinase regulator activity, structural 
constituent of ribosome and ubiquitin−like protein ligase 
binding. For BP analysis, the maximum no. of genes were 
enriched in cell cycle G1/S phase transition, G1/S transition of 
the mitotic cell cycle, positive regulation of cell cycle, response to 
decreased oxygen levels, response to oxygen levels. In contrast, 
the CC analysis provided the majority of genes that were 
enriched in chromosomal region, cyclin−dependent protein 
kinase holoenzyme complex, cytosolic ribosome, protein kinase 
complex, ribosomal subunit, ribosome serine/threonine protein 
kinase complex, spindle transferase complex and transferring 
phosphorus−containing group. For pathway enrichment 
analysis, most genes were enriched in Cell cycle, Cellular 
senescence, colorectal cancer, Gastric cancer, Hepatocellular 
carcinoma, Human papillomavirus infection, Human T−cell 
leukemia virus 1 infection, Prostate cancer and viral 
carcinogenesis. These functions and pathways could play critical 
roles in the aetiology of EVD and its ODs (Figure 6). It has been 
observed that our ODs are finally interconnected through the 
exchange of linking DEGs among themselves. In addition, the 
international publications document the interaction, evolution 
and development of these linking DEGs. The study revealed that 
AIDS, COVID-19 and Uveitis had 1 DEG in common. AIDS, 
MPOX and Uveitis also had 1 DEG in common, while AIDS and 
COVID-19 had 8 DEGs in common. COVID-19 and Uveitis had 3 
DEGs in common. On the contrary MPOX and Uveitis had 5 
DEGs in common. Additionally, AIDS and Uveitis shared 5 
DEGs, while AIDS and MPOX shared 3 DEGs. The interaction 
among the ODs is illustrated in Figure 7 through an association 
network. The findings indicated that the majority of the linking 
genes identified their targets, with the exception of some genes. 
Figure 8 depicts the number of drugs that interact with specific 
target genes. The findings indicate that genes that exhibit a 
greater level of interaction with multiple drugs may be more 
closely associated with the fundamental mechanisms that 
underlie the pathological phenotype associated with these 
drugs. Refer to Supplementary Table S2 for a comprehensive list 
of target genes and their drugs.     



ISSN 0973-2063 (online) 0973-8894 (print)  

©Biomedical Informatics (2025) Bioinformation 21(8): 2878-2890 (2025) 
 

2886 

 

 
Figure 4: (a)| PPI Network [Red color nodes are upregulated DEGs], (b) PPI Network [Green color nodes are down regulated DEGs], 
and (c) topological properties of PPI Network.  
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Figure 6: Functional enrichment and pathway analysis of 69 target genes is shown on the bubble graph based on log10 (Padj) values 
in the Y-axis. The gene ontology (molecular functions, biological processes and cellular component) is represented in cnetplot. The 
pathway analysis is demonstrated through dotplot. 
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Discussion: 

This study revealed two significant genes, MALAT1 and 
HIST1H2BC, as connecting novel diagnostic biomarkers of EVD 
and its ODs. The MALAT1, known as the metastasis-associated 
lung adenocarcinoma transcript 1, is a long non-coding RNA 
(lncRNA) that plays a crucial role in regulating gene expression. 
Its dysregulated expression has been linked to the pathogenesis 
and advancement of various malignancies in humans [59]. The 
primary localization of MALAT1 is within nuclear speckles, 
which are sub-nuclear regions known for their high dynamism 
and involvement in the storage, alterations and/or assembling of 
splicing factors [60]. Previous study suggested that the role of 
MALAT1 lies in its ability to enhance the stability of the 
interaction between the poly-pyrimidine tract–binding protein 1 
(PTBP1, also referred to as hnRNP I) and PTB-associated 
Splicing Factor (PSF). This interaction forms a functional module 
that plays a crucial role in the regulation of pre mRNA 
alternative splicing (AS). Furthermore, it has been suggested that 
this functional module may have implications in the 
development and progression of hepatocellular carcinoma [61]. 
Another study demonstrated that Malat1 plays a pivotal role in 
the pathogenesis linked to deviant macrophage activation, 
thereby establishing Malat1 as a promising therapeutic target for 
ameliorating this cohort of disorders [62]. The hypothesis that 
long non-coding RNAs (lncRNAs) regulate transcription 
through chromatin modification has gained substantial support 
from numerous research conducted in the past decade. This 
mechanism of lncRNA regulation is believed to play a crucial 
role in the antiviral response [63]. As an illustration, the lncRNA 
MALAT1, which is triggered by HIV-1, effectively directs the 
core constituent of PRC2, EZH2, away from the promoter region 
of HIV-1's long terminal repeat (LTR). This phenomenon results 
in the dissociation of PRC2, which is responsible for the 
deposition of H3K27me3, thereby mitigating the epigenetic 
suppression of HIV-1 gene expression. The reactivation of 
transcription promoted by the long terminal repeat (LTR) of 
HIV-1 is a critical process necessary for both viral replication and 
the establishment of latency [64]. Considering the empirical 
evidence that individuals diagnosed with non-small cell lung 
cancer (NSCLC) demonstrate a heightened prevalence of Covid-
19, coupled with the manifestation of more severe symptoms 
and unfavourable prognoses, it is plausible to assert that the 
elevated expression of MALAT1 in NSCLC patients may impede 
the innate antiviral defence mechanisms, thereby augmenting 
their vulnerability to SARS-CoV-2 infection. Nevertheless, 
additional research is imperative to elucidate the precise 

function of MALAT1 in the context of SARS‐CoV‐2 [65]. The 

function of MALAT1 in inhibiting apoptosis of myocardial cells 
has been established by its ability to reduce the expression of the 
PTEN (phosphatase and tensin homolog) gene via the action of 
miR-320 [66]. It is noteworthy that the upregulation of MALAT1 
was identified in response to the aforementioned associated 
disorders. Numerous investigations have substantiated the 
upregulation of MALAT1, a long non-coding RNA, in various 
cancerous tissues. This overexpression has been linked to 
heightened metastatic activity and unfavourable prognoses in 

lung cancer [67], breast cancer [68], colon cancer [69], esophageal 
cancer [70] and several other malignancies. MALAT1 has 
additionally been implicated in the regulation of histone 
acetylation [71], the process of endothelial-to-mesenchymal 
transition (EMT) [72]. Recent studies have brought attention to 
an additional function of MALAT1 lncRNA in viral infection and 
innate immune responses, further confirming its significant 
involvement in several biological processes. The study 
conducted by Wei et al. examines the involvement of MALAT1 
in inflammatory damage subsequent to lung transplantation, 
potentially providing valuable insights into the role of MALAT1 
in inflammation-induced injury following SARS-Cov-2 infection. 
It is noteworthy that the suppression of MALAT1 expression 
resulted in the mitigation of inflammatory damage through the 
inhibition of neutrophil chemotaxis and the influx of immune 
cells to the infection site [73]. The authors propose that this 
mechanism may regulate the development of acute lung injury 
via the NF-kB and p38 MAPK pathways [74]. Additionally, it is 
feasible that the inhibition of neutrophil chemotaxis may 
alleviate the severity of cytokine storms in lung inflammatory 
injury. In their study, Bhattacharyya et al. elucidate the 
functional significance of MALAT1 in the context of two flavi-
viruses, namely Japanese encephalitis virus (JEV) and West Nile 
virus (WNV).The Neuro2a cells, upon treatment with these 
viruses, exhibit and upregulation of MALAT1, which 
subsequently enhances the inflammatory response [75]. 
MALAT1, in conjunction with lncRNA NEAT1, has 
demonstrated potential as biomarkers for HIV infection, 
following the identification of elevated amounts of these long 
non-coding RNAs in peripheral blood mononuclear cells 
(PBMCs) after infection [76].  
 
HIST1H2BC belongs to the histone H2B family. Histone 
modification appears to play a role in tumorigenicity, with 
mutations in histone H2B identified as major cancer drivers [77, 
78]. It was reported that the HIST1H2BC gene had the greatest 
disparity in expression between brain and lymph node 
metastases in individuals diagnosed with metastatic breast 
cancer [79]. However, few studies have examined its relationship 
with cancer prognosis, which needs additional exploration. A 
strong correlation was discovered between the prognosis of 
bladder cancer and HIST1H2BC gene. HIST1H2BC was found to 
be specifically expressed in neutrophils. This gene contributes to 
the unique transcriptional profile of neutrophils, which helps in 
identifying neutrophils within the tumour microenvironment 
[80]. Previous studies have demonstrated that the expression of 
Hist1h2bc is increased in the ageing retina [81]. Another study 
showed that a reduction in the protein expression of 
HIST1H2BC, which possesses antibacterial properties, can 
enhance the capacity of TNF-alpha (gene: TNF) to induce the 
upregulation of genes linked with inflammation. Hence, it is 
plausible that mutations occurring in these genes may contribute 
to the heightened inflammatory infiltrate reported in the subset 
characterised by high CD8 T cell count, as well as in the subset 
exhibiting an abundance of both T cell types [82, 83]. It has been 
reported that HIST1H2BC is associated with human papilloma 
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virus infection [84]. The infection with Pseudomonas aeruginosa 
bacillus resulted in the downregulation of the HIST1H2BC gene 
[85]. Although several studies have been done on biomarkers 
identification, still there is a void of research where common 
biomarkers were useful in diagnostic purpose or therapeutic 
management of similar type of viral disease. However a 
particular study based on biomarker identification associated 
with viral comorbidities shows that chikungunya has relation 
with Ebola Virus, Dengue and Semliki Forest Virus 
characterized by inflammations in these viral diseases and it 
aimed to discover common biomarkers for comorbidity of viral 
infections. They built relationship networks based on the 
Chikungunya virus after identifying shared genes among the 
illnesses mentioned above. Their analysis revealed that 1 gene 
KCNMA1 is commonly dysregulated among Chikungunya 
virus, Ebola virus and pain, 1 gene CELF4 is commonly 
dysregulated among Chikungunya virus, Ebola and Semliki 
Forest virus and GOS2 is common among Chikungunya virus, 
Ebola virus, Dengue and pain, another 1 gene ARNTL2 is 
common among Chikungunya virus, Dengue, Semliki Forest 
virus and pain. However 2 genes (B3GNT9 and BCL2L11) play 
an important role and differentially expressed among 
Chikungunya virus, Ebola virus, Semliki forest virus and pain. 
According to this study, the identified key genes MALAT1 and 
HIST1H2BC may serve as potential connecting biomarkers and 
therapeutic targets for EVD and its ODs in the future. There are 
certain limitations to consider, one of which is the limited 
sample size. At now, the existing datasets do not provide 
enough information for conducting a comprehensive 
investigation. Therefore, increasing the sample size would yield 
a more comprehensive outcome. Additionally, the ODs 
examined in this study are diverse in nature and it is possible 
that there are other factors that could also contribute to their 
occurrence. Despite its limitations, this analysis has the potential 
to yield more accurate results based on an analysis that 
combines integrated network biology and bioinformatics 
methodologies. 
 
Conclusion: 

This study identified MALAT1 and HIST1H2BC as novel 
diagnostic biomarkers and 27 shared differentially expressed 
genes (DEGs) common to Ebola Virus Disease (EVD) and its 
overlapping diseases. Understanding the functions of these 
genes may lead to improved diagnostics and therapies for 
individuals affected by these conditions. Further external 
validation studies are crucial to confirm these findings and 
assess the impact of these genes on disease progression. 
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